• Title/Summary/Keyword: Outer membrane vesicles

Search Result 54, Processing Time 0.024 seconds

Effects of Chlorhexidine digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic acid in Model Membranes of Total Lipids Extracted from Porphyromonas gingivalis Outer Membranes

  • Jang, Hye-Ock;Kim, Dong-Won;Kim, Byeong-Ill;Sim, Hong-Gu;Lee, Young-Ho;Lee, Jong-Hwa;Bae, Jung-Ha;Bae, Moon-Kyoung;Kwon, Tae-Hyuk;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • The purpose of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Large unilamellar vesicles (OPGTL) were prepared with total lipids extracted from cultured Porphyromonas gingivalis outer membranes (OPG). The anthroyloxy probes were located at a graded series of depths inside a membrane, depending on its substitution position (n) in the aliphatic chain. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine effects of chlorhexidine digluconate on differential rotational mobility, while changing the probes' substitution position (n) in the membrane phospholipids aliphatic chain. Magnitude of the rotational mobility of the intact six membrane components differed depending on the substitution position in the descending order of 16-(9-anthroyloxy)palmitic acid (16-AP), 12, 9, 6, 3 and 2-(9-anthroyloxy)stearic acid (12-AS, 9-AS, 6-AS, 3-AS and 2-AS). Chlorhexidine digluconate increased in a dose-dependent manner the rate of rotational mobility of hydrocarbon interior of the OPGTL prepared with total lipids extracted from cultured OPG, but decreased the mobility of membrane interface of the OPGTL. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

A Study on the Oogeneis of False Dace (Pseudorasbora parva) (참붕어 (Pseudorasbora parva)의 난자형성과정에 관한 연구)

  • Kim, Dong-Heui;Lee, Kyu-Jae;Kim, Seok;Deung, Young-Kun
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • The oogenesis and ultrastructure of fertilized egg envelope of false dace were investigated by light and electron microscope. The cytoplasm of false dace oogonia was basophilic and many nucleoli were located at inner side of nuclear membrane. In primary oocytes, yolk vesicles were distributed in marginal area only and egg envelope was not formed on egg outside. In secondary oocyte, the egg envelope was formed and yolk vesicles were increased than that of early stage in cytoplasm. The amount of basophilic substance was decreased. In case of matured egg, thickness of egg envelope and site of egg were increased, basophilic substance was distributed in egg envelope around only. The yolk vesicles were changed to yolk mass in accordance with development. The fertilized egg was of ellipsoidal, adhesive type and yellowish, have a single micropyle in the area of the animal pole. The fertilized egg envelope consisted of three layers, an outer adhesive layer, a middle layer consisting of 6 lamellae alternating layers and an inner electron dense layer. An outer surface of the fertilized egg envelope was arranged by adhesive fibrous structures. In conclusion, it is summarized that the oogenesis of false dace were the increase of cell size, the formation and accumulation of yolk, and decrease of basophilic intensity in cytoplasm. These ultrastructural characteristics of fertilized egg envelope from false dace can be utilized in taxonomy of teleost.

The Oogenesis of Chinese minnow, Leuciscinae, Teleostei (경골어류 황어아과 버들치의 난자형성과정)

  • Kim, Dong-Heui;Chang, Byung-Soo;Jung, Han-Suk;Teng, Yung-Chien;Kim, Seok;Lee, Kyu-Jae
    • Applied Microscopy
    • /
    • v.39 no.3
    • /
    • pp.237-243
    • /
    • 2009
  • Chinese minnow, Rhynchocypris oxycephalus is a teleost belonging to Leuciscinae, Cyprinidae. The oogenesis and ultrastructure of egg envelope in Chinese minnow were investigated by light and electron microscopes. The ovary was of white yellowish and ellipsoidal shape with the major axis 30 mm and the minor axis 7mm. Cytoplasm of oogonia was basophilic and many nucleoli were located at inside of nuclear membrane. In primary oocytes, yolk vesicles were distributed only in the marginal area and egg envelope was not formed on the outside of an egg. In secondary oocytes, the egg envelope was formed and yolk vesicles in the cytoplasm were increased than the earlier stage. The basophilic substance of cytoplasm was changed to acidic. In case of matured egg, thickness of egg envelope and size of egg were increased. The yolk vesicles were changed to yolk mass in accordance with development. The outer surface of egg envelope was covered by microvilli-structures, and had a micropyle on the area of animal pole. Egg envelope consisted with 2 layers, an adhesive outer layer with microvilli-structures and fibrillar inner layer. In conclusion, the oogenesis of Chinese minnow was characterized by the increase in cell size, the formation and accumulation of yolk, and the decrease of basophilic substance in the cytoplasm. The oogenesis of Chinese minnow seems to share common patterns in Cyprinidae, but these ultrastructural unique characters of egg envelope can be utilized in taxonomy of teleost.

Escherichia coli-Derived Outer Membrane Vesicles Deliver Galactose-1-Phosphate Uridyltransferase and Yield Partial Protection against Actinobacillus pleuropneumoniae in Mice

  • Quan, Keji;Zhu, Zhuang;Cao, Sanjie;Zhang, Fei;Miao, Chang;Wen, Xintian;Huang, Xiaobo;Wen, Yiping;Wu, Rui;Yan, Qigui;Huang, Yong;Ma, Xiaoping;Han, Xinfeng;Zhao, Qin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2095-2105
    • /
    • 2018
  • In our previous studies, we have identified several in vivo-induced antigens and evaluated their potential as subunit vaccine candidates in a murine model, in which the recombinant protein GalT showed the most potent immunogenicity and immunoprotective efficacy against Actinobacillus pleuropneumoniae. To exploit a more efficient way of delivering GalT proteins, in this study, we employed the widely studied E. coli outer membrane vesicles (OMVs) as a platform to deliver GalT protein and performed the vaccine trial using the recombinant GalT-OMVs in the murine model. Results revealed that GalT-OMVs could elicit a highly-specific, IgG antibody titer that was comparable with the adjuvant GalT group. Significantly higher lymphocyte proliferation and cytokines secretion levels were observed in the GalT-OMVs group. 87.5% and 50% of mice were protected from a lethal dose challenge using A. pleuropneumoniae in active or passive immunization, respectively. Histopathologic and immunohistochemical analyses showed remarkably reduced pathological changes and infiltration of neutrophils in the lungs of mice immunized with GalT-OMVs after the challenge. Taken together, these findings confirm that OMVs can be used as a platform to deliver GalT protein and enhance its immunogenicity to induce both humoral and cellular immune responses in mice.

The Effect of Dibucaine.HCl on the Physical Properties of Neuronal Membranes

  • Jang, Hye-Ock;Hyun, Cheol-Ho;Yoon, Jin-Hyeok;Kang, Yong-Gyu;Park, Sung-Min;Park, Young-Sik;Park, Jun-Seop;Ok, Jin-Seok;Lee, Dong-Hun;Bae, Moon-Kyung;Yun, Il
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.67-73
    • /
    • 2005
  • Fluorescent probe techniques were used to evaluate the effect of dibucaine.HCl on the physical properties (transbilayer asymmetric lateral mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of 1,3-di(l-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Dibucaine.HCl increased the bulk lateral mobility, and annular lipid fluidity in SPMV lipid bilayers, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMV lipid bilayer induced by dibucaine.HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral mobility of bulk SPMV lipid bilayer. It also caused membrane proteins to cluster. These effects of dibucaine.HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of dibucaine.HCl.

  • PDF

The Effect of Ethanol on the Physical Properties of Neuronal Membranes

  • Bae, Moon-Kyoung;Jeong, Dong-Keun;Park, No-Soo;Lee, Cheol-Ho;Cho, Bong-Hye;Jang, Hye-Ock;Yun, Il
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.356-364
    • /
    • 2005
  • Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.

The Effect of Methanol on the Structural Parameters of Neuronal Membrane Lipid Bilayers

  • Joo, Hyung-Jin;Ahn, Shin-Ho;Lee, Hang-Rae;Jung, Sung-Woo;Choi, Chang-Won;Kim, Min-Seok;Bae, Moon-Kyoung;Chung, In-Kyo;Bae, Soo-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.255-264
    • /
    • 2012
  • The structures of the intact synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortexs, and the outer and the inner monolayer separately, were evaluated with 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) as fluorescent reporters and trinitrophenyl groups as quenching agents. The methanol increased bulk rotational and lateral mobilities of SPMVs lipid bilayers. The methanol increased the rotational and lateral mobilities of the outer monolayers more than of the inner monolayers. n-(9-Anthroyloxy)stearic acid (n-AS) were used to evaluate the effect of the methanol on the rotational mobility at the 16, 12, 9, 6, and 2 position of aliphatic chains present in phospholipids of the SPMVs outer monolayers. The methanol decreased the anisotropy of the 16-(9-anthroyloxy)palmitic acid (16-AP), 12-(9-anthroyloxy)stearic acid (12-AS), 9-(9-anthroyloxy)stearic acid (9-AS), and 6-(9-anthroyloxy)stearic acid (6-AS) in the SPMVs outer monolayer but it increased the anisotropy of 2-(9-anthroyloxy)stearic acid (2-AS) in the monolayers. The magnitude of the increased rotational mobility by the methanol was in the order at the position of 16, 12, 9, and 6 of aliphatic chains in phospholipids of the outer monolayers. Furthermore, the methanol increased annular lipid fluidity and also caused membrane proteins to cluster. The important finding is that was far greater increase by methanol in annular lipid fluidity than increase in lateral and rotational mobilities by the methanol. Methanol alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that methanol, in additions to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membranes lipids.

T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells

  • Hye-Ran Kim;Jeong-Su Park;Won-Chang Soh;Na-Young Kim;Hyun-Yoong Moon;Ji-Su Lee;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.3.1-3.14
    • /
    • 2023
  • Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.

Ultrastructure and Role of Somatic Cells in Macrobrachium nipponense Testis (징거미새우, Macrobrachium nipponense 정소 구성세포의 미세구조와 기능)

  • KIM Dae-Hyun;KANG Jung-Ha;HAN Chang-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.403-407
    • /
    • 2000
  • Ultrastructure and function of testis somatic cells in freshwater prawns Macrobrachium nipponense were studied. The paired testes of the prawn were elongated, united at their anterior end, which lay between the dorsal surface of the hepatopancreas and the heart. Each testis consisted of a large number of seminiferous cords compactly held together by connective tissue. A seminiferous cord was composed of an outer layer of simple squamous epithelium, a basement membrane, the closely packed germ cells and sustentacular cells of the germinal ridge, and an inner layer of simple cuboidal epithelial cells. Leydig cell-like cells in an angular areas filling the space of the seminiferous cords were observed. The nuclei of leydig cell-like cells were characterized by a distinct nucleolus. The simple squamous epithelial layer was composed of flattened cells tying on a basement membrane. The nuclei of the flattened cells were often overlapped in a layer, and the cytoplasm of the cells was observed just near the nuclei. The sustentacular cells were complex in morphology. These cells had relatively small cell bodies from which long cytoplasmic extensions ramified reached the space of germ cells in the germinal ridge. The nuclei of sustentacular cells usually exhibited angular profiles and located most commonly at the periphery of the cords. Cells of simple cuboidal epithelium located between germinal ridge and lumen of seminiferous cord, and part of the cells were adjacent to basal lamina, The cuboidal epithelial cells contained numerous mitochondria, the well-developed rER, the well-developed Golgi complex, and irregularly shaped nuclei. Transition vesicles appeared on the cis side of the Golgi complex. The large vesicles on the trans side of the complex appeared to fuse to form a membrane-bound structure. A number of pits on the cell apex suggested exocytotic activity for secretion of the sperm supporting matrix.

  • PDF

The Effect of Lidocaine.HCl on the Fluidity of Native and Model Membrane Lipid Bilayers

  • Park, Jun-Seop;Jung, Tae-Sang;Noh, Yang-Ho;Kim, Woo-Sung;Park, Won-Ick;Kim, Young-Soo;Chung, In-Kyo;Sohn, Uy Dong;Bae, Soo-Kyung;Bae, Moon-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.413-422
    • /
    • 2012
  • The purpose of this study is to investigated the mechanism of pharmacological action of local anesthetic and provide the basic information about the development of new effective local anesthetics. Fluorescent probe techniques were used to evaluate the effect of lidocaine HCl on the physical properties (transbilayer asymmetric lateral and rotational mobility, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex, and liposomes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from the SPMV. An experimental procedure was used based on selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py. Lidocaine HCl increased the bulk lateral and rotational mobility of neuronal and model membrane lipid bilayes, and had a greater fluidizing effect on the inner monolayer than the outer monolayer. Lidocaine HCl increased annular lipid fluidity in SPMV lipid bilayers. It also caused membrane proteins to cluster. The most important finding of this study is that there is far greater increase in annular lipid fluidity than that in lateral and rotational mobilities by lidocaine HCl. Lidocaine HCl alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that lidocaine, in addition to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membrane lipid.