• 제목/요약/키워드: Outer gear

검색결과 67건 처리시간 0.025초

순간속도중심을 이용한 외륜회전형 에피사이클로이드 판기어의 형상설계법에 관한 연구 (A Study on Shape Design Method by Instant Velocity Centers of Rotating Outer-Ring Type Epicycloid Plate Gear)

  • 장세원;신중호;권순만;윤호업
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1398-1401
    • /
    • 2004
  • This paper proposes a new approach for the shape design of the rotating outer-ring type epicycloid plate gear by using instant velocity center. First, this method defines the instant velocity centers for rotating outer-ring type epicycloid plate gear and calculates the contact angles and the contact points by using the geometric relationships and the kinematic properties of the reducer. Second, it generates the full shape of the cycloidal plate gear. Finally, the paper develops CAD-program for construction of the design automation using the proposed method. This CAD-program is developed to have the functions of the friendly user interface and the simulation of the real operation for the cycloid reducer.

  • PDF

DEVELOPMENT OF AN OPTIMIZATION TECHNIQUE OF A WARM SHRINK FITTING PROCESS FOR AN AUTOMOTIVE TRANSMISSION PARTS

  • Kim, H.Y.;Kim, C.;Bae, W.B.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.847-852
    • /
    • 2006
  • A fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that applies heat in the outer diameter of a gear to a suitable range under the tempering temperature and assembles the gear and the shaft made larger than the inner radius of the gear. Its stress depends on the yield strength of a gear. Press fitting is a method that generally squeezes gear toward that of a shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of a shaft. A warm shrink fitting process for an automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by the process produced dimensional change in both outer diameter and profile of the gear so that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of a warm shrink fitting process in which design parameters such as contact pressure according to fitting interference between outer diameter of a shaft and inner diameter of a gear, fitting temperature, and profile tolerance of gear are involved. In this study, an closed form equation to predict the contact pressure and fitting load was proposed in order to develop an optimization technique of a warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained from theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with the results.

자동차 변속기 단품(축/기어)용 온간압입공정 최적화 기법 개발 (Development of Optimization Technique of Warm Shrink Fitting Process for Automobile Transmission Part(Shaft/Gear))

  • 김호윤;배원병;김철
    • 한국정밀공학회지
    • /
    • 제23권5호
    • /
    • pp.37-43
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional change in both outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the outer diameters of the gears have a good agreement with results.

8 MW급 대용량 풍력발전기용 요 감속기 치합전달오차에 따른 응답해석에 관한 연구 (A Study on Response Analysis by Transmission Error of Yaw Drive for 8 MW Large Capacity Wind Turbines)

  • 장서원;박세호;김영국;김민우;이형우
    • 풍력에너지저널
    • /
    • 제15권1호
    • /
    • pp.43-49
    • /
    • 2024
  • This study performed a response analysis according to the transmission error of the yaw drive. To perform the response analysis, the excitation source of the transmission error was modeled and the outer ring of the first stage bearing and the outer ring of the output shaft bearing were used as measurement positions. The response results were analyzed based on the vibration tolerance values of AGMA 6000-B96. As a result of the response of the first stage bearing outer ring, the maximum displacement of the first stage planetary gear system was 5.59 and the maximum displacement of the second to fourth stage planetary gear systems was 4.21 ㎛ , 3.13 ㎛ , and 25.6 ㎛ . In the case of the output shaft bearing outer ring, the maximum displacement of the first stage planetary gear system was 1.73 ㎛, and the maximum displacement of the second to fourth stage planetary gear system was 1.94 ㎛, 0.73 ㎛, and 2.03 ㎛. According to AGMA 6000-B96, the vibration tolerance of first stage is 17.5 ㎛, and the vibration tolerance of the second to fourth stages is 58 ㎛, 80 ㎛, and 375 ㎛, which shows that the vibration tolerance is satisfied and it is safe.

단품(축/OUTPUT 기어)조립을 위한 온간압입공정 해석 (Analysis of the Warm Shrink Fitting Process for Assembling the Part(Shaft and Output Gear))

  • 김태진;강희준;김철;주석재;김호윤
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.47-54
    • /
    • 2008
  • Fitting process carried out in the automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by a press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for the automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes in both the outer diameter and profile of the gear. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop an optimization technique of the warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field was in good agreements with the results obtained by the theoretical and finite element analysis.

기어형 높이 조절식 맨홀 개발 (Development of a Gear-shaped Manhole with Height Adjustment)

  • 김창호;박준홍;최정일
    • 한국산업융합학회 논문집
    • /
    • 제7권1호
    • /
    • pp.63-68
    • /
    • 2004
  • There are a lot of manholes such as for water supply, sewage, telecommunication cable, traffic sign, electricity supply, and rainwater, etc. Conventional manholes installed on a road are impossible to adjust height, so that they should be entirely excavated to reinstall or repair. This entire excavation of a manhole causes too much time-consuming work, waste of resources, and obstruction of traffic. In this study, in order to solve the above mentioned problems, a cover, outer and inner parts of a manhole are integrated by gear-shaped parts located between outer and inner parts of a manhole. Mechanical design is performed to determine dimension of gear-shaped parts by Taguchi orthogonal array table. Cast molds for a gear-shaped manhole are also manufactured.

  • PDF

평행방향/할박 자화 영구자석을 갖는 마그네틱 기어의 설계변수에 따른 토크특성 해석 및 비교 (Comparison and Torque Analysis for Magnetic Gear with Parallel/Halbach Magnetized PMs according to Design Parameters)

  • 홍상아;최장영
    • 한국자기학회지
    • /
    • 제24권5호
    • /
    • pp.152-159
    • /
    • 2014
  • 마그네틱 기어는 두 개 이상의 분리된 장치들 사이에서 기계적인 접촉 없이 토크를 전송한다. 특히, 희토류계 영구자석을 사용한 마그네틱 기어는 고 출력으로 인해 다양한 산업에 적용된다. 따라서 마그네틱 기어는 일반적인 기어를 대체할 수 있다. 본 논문에서는 이차원 유한요소해석을 이용해 평행방향과 할박 자화 마그네틱 기어의 기어비를 선정하고, 내측과 외측 영구자석 두께, 철심 각도, 할박 세그먼트 개수, 내측과 외측 영구자석 자화 패턴과 같은 설계 변수에 따라 토크 해석을 수행하였다. 해석 결과, 개선된 설계변수를 갖는 모델이 초기 설계 모델과 비교해 더 높은 토크를 가짐을 확인하였다.

온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구 (A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process)

  • 김호윤;최창진;배원병;김철
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.

높이 조절식 맨홀 개발에 관한 연구 (A Study on Development of a Manhole with Height Adjustment)

  • 김창호;박준홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.710-715
    • /
    • 2004
  • There are a lot of manholes such as for water supply, sewage, telecommunication cable, traffic sign, electricity supply, and rainwater, etc. Conventional manholes installed on a road are impossible to adjust height, so that they should be entirely excavated to reinstall or repair. This entire excavation of a manhole causes too much time-consuming work, waste of resources, and obstruction of traffic. In this study, in order to solve the above mentioned problems, a cover, outer and inner parts of a manhole are integrated by gear-shaped parts located between outer and inner parts of a manhole. Mechanical design is performed to determine dimension of gear-shaped parts by Taguchi orthogonal array table. Cast molds for a gear-shaped manhole are also manufactured.

  • PDF