• Title/Summary/Keyword: Outdoor experiments

Search Result 266, Processing Time 0.033 seconds

A Recent Research Summary on Smart Sensors for Structural Health Monitoring (구조물 건전성 모니터링을 위한 스마트 센서 관련 최근 연구동향)

  • Kim, Eun-Jin;Cho, Soo-Jin;Sim, Sung-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.10-21
    • /
    • 2015
  • Structural health monitoring (SHM) is a technique to diagnose an accurate and reliable condition of civil infrastructure by collecting and analyzing responses from distributed sensors. In recent years, aging civil structures have been increasing and they require further developed SHM technology for development of sustainable society. Wireless smart sensor and network technology, which is one of the recently emerging SHM techniques, enables more effective and economic SHM system in comparison to the existing wired systems. Researchers continue on development of the capability and extension of wireless smart sensors, and implement performance validation in various in-laboratory and outdoor full-scale experiments. This paper presents a summary of recent (mostly after 2010) researches on smart sensors, focused on the newly developed hardware, software, and validation examples of the developed smart sensors.

Visual Observation Confidence based GMM Face Recognition robust to Illumination Impact in a Real-world Database

  • TRA, Anh Tuan;KIM, Jin Young;CHAUDHRY, Asmatullah;PHAM, The Bao;Kim, Hyoung-Gook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1824-1845
    • /
    • 2016
  • The GMM is a conventional approach which has been recently applied in many face recognition studies. However, the question about how to deal with illumination changes while ensuring high performance is still a challenge, especially with real-world databases. In this paper, we propose a Visual Observation Confidence (VOC) measure for robust face recognition for illumination changes. Our VOC value is a combined confidence value of three measurements: Flatness Measure (FM), Centrality Measure (CM), and Illumination Normality Measure (IM). While FM measures the discrimination ability of one face, IM represents the degree of illumination impact on that face. In addition, we introduce CM as a centrality measure to help FM to reduce some of the errors from unnecessary areas such as the hair, neck or background. The VOC then accompanies the feature vectors in the EM process to estimate the optimal models by modified-GMM training. In the experiments, we introduce a real-world database, called KoFace, besides applying some public databases such as the Yale and the ORL database. The KoFace database is composed of 106 face subjects under diverse illumination effects including shadows and highlights. The results show that our proposed approach gives a higher Face Recognition Rate (FRR) than the GMM baseline for indoor and outdoor datasets in the real-world KoFace database (94% and 85%, respectively) and in ORL, Yale databases (97% and 100% respectively).

Implementation of GPS-based Wireless Loss Prevention System using the LoRa Module (LoRa 모듈을 이용한 GPS기반 무선 분실 방지 시스템 구현)

  • Ko, Jun-Hyeok;Han, Dong-Kyun;Lee, Se-Ra;Park, Ha-Yeon;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.761-768
    • /
    • 2017
  • As the loss prevention system using bluetooth has a short communication range, it has a problem which its location is not known if it is strayed out of a certain distance. To overcome shortcoming of such an existing loss prevention system, this paper proposes a GPS-based wireless loss prevention system without communication fee using the LoRa Communication with a long distance. The proposed system performs a remote control application on the smart-phone and then is able to get a long-distance GPS coordinates about the location of the loss prevention system on the google map. For performance evaluation of the implemented proposed system, the experiments for transmitting and receiving data are done in open terrain, indoor and outdoor areas and the experiment results identified the superiority of the proposed system in the long-distance.

Simultaneous treatment of Cr(VI) and EDCs using flat type photocatalytic reactor under solar irradiation (평판형 태양광반응기를 이용한 복합오염물질의 동시처리 연구)

  • Kim, Saewon;Cho, Hyekyung;Joo, Hyunku;Her, Namguk;Yi, Kwangbok;Kim, Jong Oh;Yoon, Jaekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.501-509
    • /
    • 2016
  • In this study, a flat-type photocatalytic reactor is applied under solar irradiation for simultaneous treatment of target pollutants: reduction of Cr(VI) to Cr(III) and oxidation of EDCs (BPA, EE2, E2). An immobilized type of photocatalyst was fabricated to have self-grown nanotubes on its surface in order to overcome limitations of powdery photocatalyst. Moreover, Ti mesh form was chosen as substrate and modified to have both larger surface area and photocatalyst content. Ti mesh was anodized at 50V and $25^{\circ}C$ for 30min in the mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and annealed at $450^{\circ}C$ for 2 hours in ambient oxygen to have anatase structure. Surface characterization was done with SEM and XRD methodologies. Fabricated NTT was applied to water treatment, and coexisting Cr(VI) and organics (EDCs) enhanced each other's reactions by scavenging holes and electrons and thus impeding recombination. Also, several experiments were conducted outdoor under direct sunlight and it was observed that both solar-tracking and applying modified photocatalyst were proven to enhance reaction efficiency.

Tip-over Terrain Detection Method based on the Support Inscribed Circle of a Mobile Robot (지지내접원을 이용한 이동 로봇의 전복 지형 검출 기법)

  • Lee, Sungmin;Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1057-1062
    • /
    • 2014
  • This paper proposes a tip-over detection method for a mobile robot using a support inscribed circle defined as an inscribed circle of a support polygon. A support polygon defined by the contact points between the robot and the terrain is often used to analyze the tip-over. For a robot moving on uneven terrain, if the intersection between the extended line of gravity from the robot's COG and the terrain is inside the support polygon, tip-over will not occur. On the contrary, if the intersection is outside, tip-over will occur. The terrain is detected by using an RGB-D sensor. The terrain is locally modeled as a plane, and thus the normal vector can be obtained at each point on the terrain. The support polygon and the terrain's normal vector are used to detect tip-over. However, tip-over cannot be detected in advance since the support polygon is determined depending on the orientation of the robot. Thus, the support polygon is approximated as its inscribed circle to detect the tip-over regardless of the robot's orientation. To verify the effectiveness of the proposed method, the experiments are carried out using a 4-wheeled robot, ERP-42, with the Xtion RGB-D sensor.

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

An investigation of Panax ginseng Meyer growth promotion and the biocontrol potential of antagonistic bacteria against ginseng black spot

  • Sun, Zhuo;Yang, Limin;Zhang, Lianxue;Han, Mei
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.304-311
    • /
    • 2018
  • Background: Ginseng black spot disease resulting from Alternaria panax Whuetz is a common soil-borne disease, with an annual incidence rate higher than 20-30%. In this study, the bacterial strains with good antagonistic effect against A. panax are screened. Methods: A total of 285 bacterial strains isolated from ginseng rhizosphere soils were screened using the Kirby-Bauer disk diffusion method and the Oxford cup plate assay. We analyzed the antifungal spectrum of SZ-22 by confronting incubation. To evaluate the efficacy of biocontrol against ginseng black spot and for growth promotion by SZ-22, we performed pot experiments in a plastic greenhouse. Taxonomic position of SZ-22 was identified using morphology, physiological, and biochemical characteristics, 16S ribosomal DNA, and gyrB sequences. Results: SZ-22 (which was identified as Brevundimonas terrae) showed the strongest inhibition rate against A. panax, which showed 83.70% inhibition, and it also provided broad-spectrum antifungal effects. The inhibition efficacies of the SZ-22 bacterial suspension against ginseng black spot reached 82.47% inhibition, which is significantly higher than that of the 25% suspension concentrate azoxystrobin fungicide treatment (p < 0.05). Moreover, the SZ-22 bacterial suspension also caused ginseng plant growth promotion as well as root enhancement. Conclusion: Although the results of the outdoor pot-culture method were influenced by the pathogen inoculum density, the cropping history of the field site, and the weather conditions, B. terrae SZ-22 controlled ginseng black spot and promoted ginseng growth successfully. This study provides resource for the biocontrol of ginseng black spot.

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.

Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm (k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식)

  • Kim, Tae-Woo;Yoo, Hyeon-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1100-1105
    • /
    • 2006
  • Severe distortions of colors in the obtained images have made it difficult for color codes to expand their applications. To reduce the effect of color distortions on reading colors, it will be more desirable to statistically process as many pixels in the individual color region as possible, than relying on some regularly sampled pixels. This process may require segmentation, which usually requires edge detection. However, edges in color codes can be disconnected due tovarious distortions such as zipper effect and reflection, to name a few, making segmentation incomplete. Edge linking is also a difficult process. In this paper, a more efficient approach to reducing the effect of color distortions on reading colors, one that excludes precise edge detection for segmentation, was obtained by employing the k-means clustering algorithm. And, in detecting color codes, the properties of both six safe colors and grays were utilized. Experiments were conducted on 144, 4M-pixel, outdoor images. The proposed method resulted in a color-code detection rate of 100% fur the test images, and an average color-reading accuracy of over 99% for the detected codes, while the highest accuracy that could be achieved with an approach employing Canny edge detection was 91.28%.

  • PDF

Development of Smart Wheelchair System and Navigation Technology For Stable Driving Performance In Indoor-Outdoor Environments (실내외 환경에서 안정적인 자율 주행을 위한 스마트 휠체어 시스템 및 주행 기술 개발)

  • Lee, Lae-Kyoung;Oh, Se-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.153-161
    • /
    • 2015
  • In the present study, as part of the technology development (Quality of Life Technology, QoLT) to improve the socio-economic status of people with disabilities as an extension of these studies, we propose the development of the smart wheelchair system and navigation technology for stable and safe driving in various environments. For the disabled and the elderly make driving easy and convenient with manual/autonomous driving condition, we firstly develop the user-oriented smart wheelchair system with optimized sensors for environment recognition, and then we propose a navigation framework of a hierarchical structure to ensure real-time response, as well as driving stability when traveling to various environmental changes, and to enable a more efficient operation. From the result of several independent experiments, we ensure efficiency and safety of smart wheelchair and its navigation system.