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Abstract 
 

The GMM is a conventional approach which has been recently applied in many face 
recognition studies. However, the question about how to deal with illumination changes while 
ensuring high performance is still a challenge, especially with real-world databases. In this 
paper, we propose a Visual Observation Confidence (VOC) measure for robust face 
recognition for illumination changes. Our VOC value is a combined confidence value of three 
measurements: Flatness Measure (FM), Centrality Measure (CM), and Illumination Normality 
Measure (IM). While FM measures the discrimination ability of one face, IM represents the 
degree of illumination impact on that face. In addition, we introduce CM as a centrality 
measure to help FM to reduce some of the errors from unnecessary areas such as the hair, neck 
or background. The VOC then accompanies the feature vectors in the EM process to estimate 
the optimal models by modified-GMM training. In the experiments, we introduce a real-world 
database, called KoFace, besides applying some public databases such as the Yale and the 
ORL database. The KoFace database is composed of 106 face subjects under diverse 
illumination effects including shadows and highlights. The results show that our proposed 
approach gives a higher Face Recognition Rate (FRR) than the GMM baseline for indoor and 
outdoor datasets in the real-world KoFace database (94% and 85%, respectively) and in ORL, 
Yale databases (97% and 100% respectively).  
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1. Introduction 

In biometric recognition, auditory or visual information such as voice color, iris shape, 
fingerprint, finger vein pattern and facial structure are main clues for person recognition. 
Recently, a great deal of performance enhancement has been achieved and biometric systems 
show almost perfect performance for ideal auditory or visual signals without noises, channel 
distortions, or visual distortions. However, real biometric signals suffer from moderate or 
severe distortions. In visual cases, visual additive and quantization noises or various 
illumination mismatches are the main causes of performance degradation.  

In the face recognition area, many feature-based or holistic approaches have been 
proposed (Nixon, 1985 [14]; Reisfeld, 1994 [16]; Graf et al ., 1995 [5]; Nallammal and Radha, 
2012 [13]; Demers and Cottrell, 1993 [2]; Li et al., 2004 [12]). However, they still have a 
problem with robustness with a mismatched or biased illumination condition. Particularly, 
deep shadows and highlights are typical factors that can significantly degrade the system 
performance. To overcome the illumination problem, two types of approaches have been 
suggested. The first approach involves obtaining shadow-free or highlight-free images, which 
can yield a higher recognition rate. Shadow-free and highlight-free approaches include 
oriented local histogram equalization (Lee et al., 2012 [11]), lighting aware preprocessing 
(LAP) method (Han et al., 2010 [6]), and the shadow compensation method based on Fourier 
analysis (Choi and Jeong, 2011 [1]). The second approach involves obtaining 
illumination-robust features. A representative approach was proposed by Sanderson et al. 
(2005) [19]. They applied discrete cosine transform (DCT) and added more delta coefficients 
to feature vectors: DCT-mod, DCT-mod-delta, and DCT-mod2. While the results were 
promising, most illumination changes were artificial and do not represent most situations in 
the real world.  

Lately, a new idea was developed based on observation confidence in the speaker 
identification area. Kim et al. (2007) [10] introduced signal confidence concepts and 
suggested an auditory confidence measure embedded in GMM-based speaker identification. 
The key idea is to manage frame-based feature vectors unequally in the GMM training and 
recognition stages. This is because each frame suffers from a different amount of distortion in 
stationary noise environments. The different amount of distortion is measured in segmental 
SNR. The observation confidence acts as a weighting factor for observation probability. Also, 
Jiang (2005) [8] presented a survey on observation confidence. However, all of the mentioned 
methods are commonly applied for audio processing. In video processing, the observation 
confidence is considered less than audio confidence. That’s because it is not easy to define the 
VOC due to the complexity of the illumination problem. For this reason, the confidence values 
for evaluating observations in a facial image are necessary to improve the system 
performance.  

In some novel approaches, the approaches of using graph theory and statistic theory to 
recognize a face become more general. Such as in a research of the author M.Kafai in 2014 
[22], he proposes to apply a Reference Face Graph (RFG) where a reference face is a node 
representing a single individual. Each reference face has multiple images with various poses, 
expressions, and illumination. Obviously, we can see that the performance of this approach 
depends on a large number of images with various poses, expressions, and illumination for 
constructing a basis set of RFG. In real world database, we may not have enough such a 
number of images with various poses, expressions, and illumination. About statistic theory, 
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the author Yi Sun mentions an approach to use Joint Bayesian based on Deep hidden IDentity 
features  (DeepID) [23]. Highly compact 160-dimensional DeepID at the end of the cascade 
that contain rich identity information and directly predict a much larger number (e.g., 10, 000) 
of identity classes. But in this paper, the author does not mainly discuss about illumination. He 
just focus on the problem with a large number of face identities. In 2015, another author A. 
Punnappurath and A.N. Rajagopalan propose  a methodology for face recognition in the 
presence of space-varying motion blur comprising of arbitrarily-shaped kernels [24]. The 
illumination in their paper is handled by estimating 9 light source directions from minimizing 
a cost function. This approach seems to be effective but requires the consuming time for 
minimizing a cost function to determine 9 light source directions. 

In this paper, we propose a visual observation confidence (VOC) to counteract the impact 
of shadows and highlights in a real-world database. The VOC is calculated for the 
decomposed blocks of a face image. The proposed VOC considers flatness, distance from the 
face center, and intra-class variance as measures for confidence estimation. These correspond 
to the Flatness Measure (FM), Centrality Measure (CM), and Illumination Normality Measure 
(IM), respectively. Subsequently, the VOC values accompany the feature vectors in the 
modified-GMM training process to determine the subject optimal models.  
The remainder of this paper is organized as follows. In Section 2, we describe our main idea 
about the VOC-based approach with FM, CM, and IM. Section 3 is an overview of the 
proposed GMM based recognition system. Some modifications in the EM algorithm and 
classification process using VOC are also mentioned. In Section 4, some experiments on the 
KoFace, ORL, and Yale databases are discussed to evaluate the contributions of 
measurements (FM, CM, and IM) in our recognition system. Concluding remarks are 
presented in Section 5. 

2. The visual observation confidence-based approach  
Observation confidence is a measure representing the degree of reliability of the signal. As we 
discussed in the introduction, signals are corrupted by outer interferences. In the visual signal 
case, additive noises, biased illuminations, and coding noises are causes of signal corruption. 
Even though a captured signal is free from any corruption, visual image blocks may not be 
reliable at the point of discrimination ability while performing face recognition. For example, 
image blocks from hairs or cheeks are in-discriminable compared with those of the eyes, nose, 
and lips areas. Therefore, in the face recognition domain, VOC refers to the differentiating 
power of image blocks between subject faces. In this paper, the main aim is to enhance 
performance degradation from biased or excessive illumination. We consider the three factors 
of flatness, centrality, and illumination normality for estimating VOC as indirect 
measurements. The idea of flatness derives from spectral flatness or Wiener entropy. 
Centrality measures the distance between each image block and the face center.   The idea of 
centrality is developed based on the fact that outer areas of the face contains less discriminant 
features more than inner areas of a human face. Regarding illumination normality, we need to 
decide that image blocks belong to highlight or deep-shadow regions. That is, illumination 
normality checks the rate of excessiveness or deficiency of lighting. For flatness, centrality, 
and illumination normality, we develop FM, CM, and IM respectively. Therefore, the final 
VOC is represented by a linear combination of the three measures, 
 

VOC = wFM*FM + wCM*CM + wIM*IM                                      (1) 
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where wFM + wCM + wIM = 1. This constraint ensures that the VOC will be in the range 0 and 1 
when FM, CM and IM are in the same range. 

2.1 Flatness Measure 
Discrimination measurement reflects the ability to recognize the difference between two or 
more faces. Based on the observations, some facial features such as the eyes, nose, mouth, 
cheekbones, and jaw are distinctive features that differ in each person. In addition, it is easily 
noticed that most of these distinctive features are present in high frequency or uneven areas 
within the human skin region. Also, deficient or excessive lighting makes the face look flatter. 

Kim et al. (2004) [9] proposed the Flatness Measure (FM), which is useful for calculating 
the flatness degree of grayscale intensity in an image as follows: 
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where Gm and Am are the corresponding geometric and arithmetic means of a block, 
respectively, while T and Lu are the number of pixels in a block and luminance channel Y in 
YCbCr, respectively. The sigmoid function in Eq. (2) aims to refine all FM values into the 
range of 0 to 1. Using the sigmoid function, we the change flatness measure from the binary 
selection (Kim et al., 2004) to a measurement as a confidence value in our paper. 

After we calculate the FM value on each block in a facial image, the blocks that have a 
higher FM value have less distinctive ability, while a lower FM value indicates more 
distinctive ability than other blocks. Figs. 1 and Figs. 2 describe the ability of FM to represent 
the discrimination information of a face. Figs. 1 shows the FM value in an image 
representation and Figs. 2 shows the FM value after cutting out 20%, 40%, 60%, and 80% of 
the blocks with the highest FM values. 

2.2 Centrality Measure 
The main components of the face are the eyes, nose, and lips, all of which are located around 
the center of the face. Even though the face outline gives us information about the identity of 
the face, the eyes, nose, and lips are more distinctive for face identification. Therefore, face 
image blocks around the center should be treated with more weight than the outer face blocks 
such as the hair and neck. Also, the outer regions are easily distorted by illumination compared 

 
Original Image Geometric Average Arithmetric Average Flatness Measure 

    
Fig. 1. Y image – Gm image – Am image – FM image representation 
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Flatness Measure 20% 40% 60% 80% 

     
Fig. 2. Cutting blocks based on FM values. Blocks with high value are cut, and the remaining blocks 

are characteristic blocks. 
 

 
Fig. 3. Eye and mouth map – the center of the face. 

 
with the center regions. Thus, we can say that face image blocks near the face center are more 
specific for face recognition. 

The center of a face can be found by detecting the eyes and mouth based on the 
chrominance and luminance properties in the YCbCr color space. 

 
  (4) 

 
 

 
 
Here, Ydil and Yer are the dilation and erosion in the luminance channel Y. Eq. (4) was 
suggested by Hsu (2002) [7]. Fig. 3 describes the result of the eye and mouth map.   

In YCbCr color space, the luminance Y contains mainly illumination information. So the 
EM (Eye Map) will be affected by illumination because it has Y dilation and Y erosion. 
However, since we make the division of Y dilation over Y erosion in Eye Map equation, the 
illumination effects will be reduced. About the MM (Mouth Map), since it only has Cb and Cr 
in its equation, so, MM will be not much effected by illumination. 

 In order to construct an eye and mouth map, we aim to find the center point of the face; 
then, we can define the CM based on this point (Fig. 3). In order to refine this value to a range 
between 0 and 1, we divide the Euclidean distance of the center point of a block (Pblock) and 
the center point of a face (Pcenter) by half of the diagonal length of the face. This diagonal 
length is the Euclidean distance of the top-left point (Ptop-left) and bottom-right point 
(Pright-bottom) in a rectangle of the face (see Eq. (5)). Fig. 4 shows that CM helps to remove 
further unnecessary blocks in the hair, neck, and background areas than Fig. 2. 
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Fig. 4. Block representation in cutting 20%, 40%, 60%, and 80% of the blocks. The first row images are 
block representations in CM and the second row images are block representations in both CM and FM.  
 

2.3 Illumination Normality Measure 
In a real-world database, it is more robust to define a measurement to evaluate exactly how 
much illumination affects a face than modifying or changing the content of the image. This is 
because we cannot control the level of accuracy when modifying or changing the content of 
the image for compensation or reduction. 

The illumination in the KoFace database is quite diverse. Shadows and highlights are 
commonly representative effects in this database. Directly applying a recognition algorithm 
without considering illumination will result in poor performance. Instead, we need an 
evaluation measurement. 

Let IM be an illumination normality measure. Three steps are needed to measure 
illumination effectively and robustly. Firstly, we utilize intra-class variance to construct an 
intra-class variance graph (Otsu, 1979) [15]. Secondly, based on the graph, we detect shadow 
and highlight thresholds to segment their regions. Lastly, we define the IM value from the 
shaded and highlighted regions from the segmentation step. 

In Eq. (6), the intra-class variance fIV is employed in the luminance channel Y based on 
the bimodal histogram of the background and foreground class. A threshold t varies from 0 to 
1 to compute this variance. All pixels in the background class have intensities less than t, 
whereas the other pixels belong to the foreground class. 

 
(6) 

 
where p and σ represent the probability and variance of each class, respectively. 

Fig. 5 shows a graph of fIV. Analyzing this graph will help to detect the shadow and 
highlight points or thresholds for segmentation. Generally, the intra-class variance graph 
consists of 5 different parts. Assume that the background is the 1st class and the foreground is 
the 2nd class. The shape of each part is explained as follows: 

-  Part 1: the 1st class consists of hair or eye areas. Therefore, the variance of the 1st class 
is 0, and fIV is only the variance of the 2nd class. 

- Part 2: the 1st class includes more deep shadows, and its variance increases slightly. In 
contrast, the 2nd class loses these areas and the variance decreases substantially. This leads the 
decreasing of fIV. 

2 2( ) ( ) ( ) ( ) ( )IV foreground foreground background backgroundf t p t t p t tσ σ= +
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Fig. 5. Intra class variance of background and foreground class intuitively divided into 5 parts. 

 
- Part 3: the 1st class includes more soft shadows, and its variance increases substantially 

because soft shadows are quite distinctive from the eye, hair or deep shadows. In this case, the 
variance of the 2nd class loses only a soft shadow and its variance decreases slightly. As a result, 
fIV increases. 

- Part 4: the 1st class includes a larger skin area, so its variance increases significantly, 
while the 2nd class only loses some skin area. Therefore, fIV increases significantly. 

- Part 5: The 1st class includes all the skin areas and this leads to a slightly increasing 
variance of the 1st class. The variance of the 2nd class will become 0, because it only has 
highlight areas. In this case, fIV is the variance of the 1st class, and has quite a stable value. 

It is obvious that Part 4 contains all of the human skin information. Therefore, if we can 
find the beginning and end points of this part, the shadow and highlight points or thresholds 
will be these points. To do that, we firstly find the minimum and maximum points (tmin and 
tmax) of the graph, and the inflection point (tinflection) by the first and second-order differential 
operation. And then, the slope comparison will help to obtain the shadow and highlight 
threshold as in Eq. (7) where ε = 0.05. 
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The segmentation is very important for defining the illumination normality measure. If a 

block has a luminance average less than the shadow point or higher than the highlight point, 
the block is labeled as an illumination-affected block. In order to define the IM value, we 
employ the Tukey function as a mapping function, as in Eq. (8): 
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 (8) 

 
 
 
 
 
 
In this function, the first and last r/2 percent of samples is equal to parts of a cosine function. 
r/2 represents the shadow and highlight points (tshadow and thighlight), as shown in Fig. 6. 

Finally, IM is defined by Eq. (9) to reverse the value from the fTukey function, because a 
higher IM value means a greater illumination effect on a block. 

 
  (9) 

 
 
 
where Am is the arithmetic mean of each block (in Eq. (3)). 

We performed two experiments on two images. One image is a face affected by highlight 
illumination and the other image is a face affected by shadow illumination. The IM value is 
calculated for each image and 20%, 40%, 60%, and 80% of the blocks with the highest IM 
value are cut off. The results are shown in Figs. 7 and Figs. 8. 
 

 

 
Fig. 6. Tukey function maps intra-class variance into IM, based on shadow and highlight points. 
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Ogirinal Image Shadow Mask Highlight Mask Illumination Effect 

    
Cutting Percent of Blocks based on Illumination Measure 

20% 40% 60% 80% 

    
Fig. 7. Percent of cutting highlight blocks on illumination normality measure. 

 
Ogirinal Image Shadow Mask Highlight Mask Illumination Effect 

    
Cutting Percent of Blocks based on Illumination Measure 

20% 40% 60% 80% 

    
Fig. 8. Percent of cutting shadow blocks on illumination normality measure. 

3. The Proposed GMM-based Face Recognition System 

3.1 Face Recognition Block Diagram using VOC 
For the purpose of this paper, we would like to build a system which is robust to illumination 
changes while achieving a high recognition rate. The main contribution in this approach is that 
we define an optimum combination of FM, CM, and IM representing the discrimination, 
distance, and illumination information respectively, for each feature vector. 
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Fig. 9. Block diagram of the proposed face recognition system 

 
Based on the traditional GMM recognition process, we add further modifications in order 

to integrate the visual observation confidence value into the system. The overall block diagram 
is shown in Fig. 9. In the diagram, the input image is a facial image in the RGB color space. 
Therefore, we transform the image into YCbCr, take the luminance channel as a grayscale 
image for the 2D-DCT transformation and computation of the FM and IM values, and take the 
chrominance channel to find the CM values. 
 

About optimal GMM parameters, we need to collect all GMM components for the 
training process. In our approach, GMM components are feature vectors accompanying the 
VOC value. Following the process of EM estimation, one training and one testing face model 
are calculated. Using probability calculation on the training and testing face models, a person 
can be classified into a corresponding face subject. The VOC value is the combination 
following Eq. (1) with weight values α, β, and γ as 0.501, 0.2, and 0.299, respectively. These 
values are determined by a VOC optimization process which is mentioned in Section 4.2. In 
addition, further detail about each step in this diagram will be described in the next section. 

3.2 Preprocessing Step 
The KoFace database is composed of facial images, which are taken in a real-world 
environment. Each image contains a human face with other unnecessary information in the 
background. As such, we need a preprocessing step to segment the human face, and draw a 
rectangle around it, and scale it to the same size for block-based feature extraction. 
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Fig. 10. Face extraction from the whole input image. 

 
 

Human face segmentation can be treated as skin-tone segmentation using a special color 
space. YCbCr is a familiar color space used to detect and segment skin-tone information 
because the skin color is more compact in this space. Some constraints are defined based on 
luminance and chrominance information in order to cluster all skin color information (Garcia 
and Tziritas, 1999; Hsu et al., 2002) [4]. The largest skin-tone region is determined as the main 
human face in single face images. After the human face is detected, we draw a rectangle 
around it. And then, we need to normalize all rectangles into the same size. In the KoFace 
database, the distance from the camera to each face is nearly the same, so the normalization 
does not significantly affect each face structure. Our desired size for each face after 
normalization is 92 x 112 pixels (Fig. 10). 

3.3 Feature Extraction 
The feature extraction stage plays an important role in recognition systems because a good 
extracted feature vector will give a good representation that will provide good training for 
classification models. The Discrete Cosine Transform (DCT) was suggested as an efficient 
and robust approach to give a compact feature representation and desired dimensionality 
reduction (Sanderson et al., 2005 [19]; Ekenel and Stiefelhagen, 2006 [3]). In our approach, 
we perform the DCT transform on blocks divided from a facial image. 

Each image is divided block by block with a size of 8 x 8 pixels in an overlap of 
neighboring blocks by 50%. Fig. 11 shows an example of overlapping blocks in 8x8 red 
squares. If we denote b(x,y) as a block in the location (x,y) and N = 8 as the size of blocks, the 
2-D DCT of a block is defined as follows. 
 

(10) 
 
 

 
Fig. 11. An overlap of neighboring blocks by 50% in red squares – Zigzag scanning pattern to order 

values in terms of high frequency (or discrimination information). 
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For u, v = 0, 1, …, N-1 where α(v) = 1/N for v = 0, α(v) = 2/N for v = 1,2,…N -1. 
 

After DCT transformation, zig-zag scanning is processed to collect all values for a 
feature vector in one block to arrange values in order of high frequency (or discrimination 
information). In Fig. 11, the zig-zag scanning pattern is described and we choose M = 18 
highest values as an M-dimensional local feature vector for one block.  

3.4 EM Algorithm using VOC 
The expectation-maximization (EM) algorithm (Xu and Jordan, 1996 [21]) is a well-known 
iterative parameter estimation scheme used to find the maximum-likelihood estimation of 
parameters in statistical models. One main modification is to apply the visual observation 
confidence (ρn=VOCn) accompanying each feature vector in the M-step (Kim et al., 2007 [10]). 
This combination helps to focus on these characteristic feature vectors and to reduce the 
effects of unnecessary or illumination-affected feature vectors to find optimal parameters. 

 
Expectation step:  The posteriori probability for component i is calculated. 

 (11) 
 
 
Maximization step: Mixture weights, mean vectors, and covariance matrices are updated as:  
 

 (12) 

 
 

 (13) 
 

 

 (14) 

 
 

3.5 GMM-based Classifier using VOC 
The Gaussian Mixture Model is a type of density model that comprises a certain number of 
Gaussian functions. Using GMM, feature vectors can be modeled to perform real-time face 
recognition. Basically, we divide an image into overlapping blocks and generate feature 
vectors by DCT transformation. Then, GMM can be defined as the following equation. 

 
 (15) 

 
where x is a feature vector, λ is the GMM model, and NM is the number of GMM components. 
The density function f(x|µi,∑i) can be represented as a D-variate Gaussian pdf with µi and ∑i: 
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In Eq. (15), the value mi represents how much data exists on each Gaussian component 
satisfying  ∑i=1…M mi = 1 that can be derived from K-means on training feature vectors. 

In the GMM approach, for a given set of N independent observations X={xi}i=1..N, an 
objective function (or GMM likelihood) represents the degree of possibility that observation X 
matches the GMM model λ, which is trained from the training process as follows. 

(17) 
 

Eq. (17) shows that the objective function treats all observations equally. The summary 
of probabilities means that VOC values are not considered. In the case of no illumination 
effect, the recognition rate is rather high and accurate. However, in the case of high or low 
illumination effects, some observations are severely contaminated, and the equation has no 
information about observation confidence information to perform sufficiently and effectively. 
In order to address this issue, we suggest adding VOC values (ρn = VOCn) to each observation, 
which reflects how much it contributes to the recognition results under the influence of 
illumination as follows.  

(18) 

 
After the process of EM estimation, one training face model and one testing face model 

are calculated. We utilize these to calculate the probability and to determine the classified mth 
person using the equations presented. 

 
(19) 

 

4. Experimental results 

4.1 KoFace Database and Dataset Construction 
The KoFace database is composed of 106 face subjects. Each face subject has 5 standard 
images (i.e., no illumination), 10 indoor, and 10 outdoor images under different illumination 
conditions from very low to high shadow and highlight effect for testing datasets (Fig. 12). 

Since KoFace is our constructed real-world database, most of the experiments were 
conducted on this database. The ORL and Yale databases are well-known databases and we 
only use them in the comparison of the face recognition rate with the GMM baseline algorithm. 
As we know, the ORL and Yale databases contain grayscale images, for that reason, the center 
point cannot be automatically detected by chrominance information. To overcome this 
problem, we manually locate the center point by clicking on each image with a mouse. 

The KoFace database contains three types of conditions and three types of photograph 
contexts for each face subject. The lighting conditions are moderate (standard), low (shadow), 
and high (highlight). The photograph contexts are standard (little illumination effect), indoor 
(normal illumination effect), and outdoor (diverse illumination effects) as in Figs. 13−15  
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Fig. 12. Indoor and outdoor facial images in the KoFace database under diverse illumination conditions. 

 

 
Fig. 13. Standard facial images under moderate illumination conditions. 

 

 
Fig. 14. Indoor facial images under low illumination conditions. 

 

 
Fig. 15. Outdoor facial images under high illumination conditions. 

 
In Table 1, we describe the datasets for all experiments conducted in the KoFace, Yale, 

and ORL database. In the KoFace dataset, we have 40 face subjects and, for each, we choose 5 
standard images for the GMM models training process. We also choose 5 indoor images and 5 
outdoor images for visual observation confidence optimization in Section 4.2. In testing, when 
we have GMM models and VOC optimization combination, the other 5 indoor and outdoor 
images for each face subject are employed in the recognition process.  

4.2 Visual Observation Confidence Optimization 
Under this requirement, we need to combine FM, CM, and IM measurements in a linear 
manner to construct such a visual confidence value. A large dataset used in this process 
includes 40 face subjects in the KoFace database. With 5 indoor and 5 outdoor images, overall, 
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0.501* 0.2* 0.299*VOC FM CM IM= + +

we have 400 facial images for this VOC optimization. 
 

Table 1. Dataset description for experiments on the Yale, ORL, and KoFace databases. 

Dataset Face 
Subjects Image Type 

GMM 
Models 
Training 

VOC 
Optimization Testing 

Total 
Image for 
each face 
subject 

KoFace 40 
Each 
Face 

Subject 

Standard 5   5 
Indoor  5 5 10 

Outdoor  5 5 10 
ORL 40 Grayscale 5  5 10 
Yale 15 Grayscale 5  5 10 

 
In determining an optimum combination, we perform a complete search by setting weight 

values wFM, wCM, and wIM for FM, CM, and IM, respectively, from 0.001 to 0.999 with an 
interval of 0.05, in conjunction with the face recognition rate. 

Follow the condition wFM + wCM + wIM = 1, there will then be 210 combinations of three 
measurements for each block in 594 blocks on one face subject. Similarly, a massive 
implementation is continuously applied to other face subjects within the 40 face subjects in our 
dataset. The GMM-face recognition process is performed using these combinations to 
determine which combination gives the highest recognition rate. As a result, we found that the 
wFM = 0.501, wCM = 0.2, and wIM = 0.299 is optimal with recognition rate 98.6667% (Fig. 16). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. A complete search process to find an optimum combination of FM, CM, and IM for the VOC  
 

Based on the optimum search process, we defined a visual confidence value from three 
measurements. According to Eq. (1), the values α, β, and γ are exactly the weight values of wFM, 
wCM, and wIM, respectively, thus, we have Eq. (20) as a resultant VOC equation: 

  
                                (20) 

Flatness Measure: wFM from 0.001 to 0.999 
Centrality Measure: wCM from 0.001 to 0.999 

Illumination Measure: wIM from 0.001 to 0.999 
Constraint : wFM + wCM + wIM = 1 

40 Face Objects 
594 blocks for each face object 

3 measurements (FM, CM and IM) 
for each block 

Applied 

GMM Training Process 
GMM Matching Process 

Result 
Search Process 

wFM  wCM  wIM  FRR 
0.001 0.001 0.998 50% 
0.001 0.051 0.948 56% 
… … … … 
0.501 0.2 0.299 98.67% 
… … … … 
0.951 0.001 0.048 88% 
FRR: Face Recognition Rate 

Selection 

wFM = 0.501 
wCM = 0.2 

wIM = 0.299 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 4, April 2016                                    1839 

4.3 Face Recognition Performance on Proposed Approach 
In this section, we compare our proposed approach using visual observation confidence and 
the GMM baseline approach, and we examine the face recognition performance based on the 
Yale, ORL, and KoFace databases. 

Table 2 shows that our approach has a higher face recognition rate (FRR) than the GMM 
baseline approach on all three databases. While the increasing rates are only 1.33% and 1% in 
the cases of the Yale and ORL databases, respectively, the increasing rate is particularly high 
at 22.66% on the KoFace database in comparison with the GMM baseline rate. When the 
GMM baseline was applied to the KoFace database, the FRR was low at 74.67%, but when we 
utilized FM, CM, and IM, the result was accurate at 97.33% FRR because of the highly diverse 
illumination in our database. Fig. 17 illustrates the high face recognition rate (FRR) with 
standard and real-life databases in a horizontal bar graph. All of them mean that our proposed 
approach can work better on a real-world database than the GMM baseline approach.  

In Fig. 18, the Error Rate Reduction graph is shown based on the degree of error 
decreasing from the GMM baseline to the proposed approach. Error Reduction is calculated by 
the difference of error rate in baseline method and error rate in proposed method over the error 
rate in baseline method.The figure shows a high error reduction of 89.46% and 100% in the 
KoFace and Yale databases, respectively. These values mean that the illumination is very well 
controlled by the visual observation confidence in these databases. The 25% error reduction in 
ORL is also a high error reduction rate, and is acceptable because the FRR in this case 
increases from 96% to 97%. 

In order to examine the effectiveness of GMM/VOC under illumination effects and the its 
comparison to the best other approaches, we conduct three experiments on three dataset (Case 
1, Case 2, Case 3) under three different illumination effect conditions. We choose database 
Extend Yale-B database for the experiments because it’s lighting variety and diversity. Each 
dataset contains 10 images (5 for training and 5 for testing) for each face subject within 30 face  
 

Table 2. Comparison between the GMM baseline and proposed approach on three databases. 
Database GMM Baseline Proposed Approach Error Reduction 

Yale 98.67% 100% 100% 
ORL 96% 97% 25% 

KoFace 74.67% 97.33% 89.46% 
 

 
Fig. 17. FRRs on three datasets (KoFace, ORL, and Yale) are illustrated on a horizontal bar graph. 
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Fig. 18. Error reduction in FRR for each database of the proposed approach and GMM baseline. 

 
subjects.  In case 1, the effect of lighting is higher than case 2 and 3. In case 2, the lighting 
effect changes from low to high and, in case 3, there is a little effect of lighting. In the 
comparison with other approach, we choose the famous approach named PP + LTP/DT where 
PP is pre-processing process and LTP/DT is Local Ternary Patterns with distance 
transform-based similarity metric (Tan and Triggs, 2010 [20]). 

From the Table 3, we realize that the GMM baseline cannot give a good recognition rate 
under high illumination effects (56.67 %). In the experiment on our proposed approach, we 
can see that we got a high rate for all case 1-3. That means our approach deals with the 
illumination effect robustly and effectively and is highly comparative to one of the best 
approaches (LTP/DT) with the small difference (about from 1 % to 2.37 %). 

From the KoFace database, we also conduct more comparison results between some other 
illumination techniques with our VOC model. In this comparision, we choose DCT-based 
normalization, Wavelet-based normalization, Gradientfaces Normalization, DoG filtering 
based normalization, and Weberface normalization from the INFace toolbox at 
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/. There are 40 subjects in the 
dataset. The gallery image are standard and well-illuminated frontal images. The probe images 
are under indoor and ourdoor lighting conditions. The probe suffers from low and high amount 
of lighting sources.  The result in Table 4  shows that out VOC model can handle the lighting 
condition better than the other normalization general techniques and gives a high recognition 
rate in a real-world database such as our KoFace database. 

4.4 Contribution Evaluation of Each Measurement  
In the aspect of contribution evaluation of each measurement, we conducted 7 experiments on 
4 datasets from the KoFace database. The mutual combination of FM, CM, and IM is 
considered to evaluate the main contribution of them. The four datasets include two indoor and 
two outdoor datasets as follows: for each face subject, 10 indoor images are divided ½:½ into 
Indoor 1 and Indoor 2 datasets. 10 outdoor images are also divided ½:½ into the Outdoor 1 and 
Outdoor 2 datasets. 
 
 
 
 

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/INFace/
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Table 3. Comparison Experiments between the proposed algorithm and LTP/DT approach. 
Dataset(Yale B) Illumination 

Effect Condition 
PP + GMM 
Baseline 

PP + GMM/VOC PP +  
LTP/DT 

Case 1 Very high 56.67 % 93.33% 95.7% 
Case 2 Low to High 90.67 % 98% 99% 
Case 3 Very low 100% 100% 100% 

Table 4. All cases of combination from FM, CM , and IM based on four datasets 

Techniques Indoor condition Outdoor condition 
DCT–based Normalization 83.5 % 76 % 
Wavelet- based Normalization 82.5 % 76.5 % 
Gradientfaces Normalization 67 % 58.5 % 
DoG filtering based Normalization 71 % 60.5% 
Weberface Normalization 70 % 69.5 % 
VOC Model (Proposed method) 94.67 % 84.67 % 

 
Table 5 shows numerical results of the mutual contributions of each measurement. Look 

at this table, we have some evaluations as:  
First evaluation: the GMM baseline gives rather low recognition rates of about 70-80% 

and 60-65% for indoor and outdoor, respectively. The illumination has a considerably 
degraded the performance in these cases.  

Second evaluation:, FM, CM, and IM are individually employed. The FM proves that 
discriminate features are the main key to increase the recognition rate to 85-90% for indoor 
datasets and 75-80% for outdoor datasets. IM gives an even higher recognition rate in these 
cases. Only CM gives a poor result when employed individually.  

Third evaluation: we conducted three more combinations: FM + CM, FM + IM, and CM 
+ IM. Table 4 shows that FM and CM give high FRRs of over 90% for indoor datasets and 
over 80% for outdoor datasets. However, the rate with the combination of CM and IM is not 
high, at only 85-90% for indoor and 70-75% for outdoor datasets. This means that FM plays an 
important role in the combination for the indoor case, and IM plays an important role in the 
combination for the outdoor case. CM is merely a supplement to help FM obtain a more 
accurate block. The last experiment is the overall combination of all measurements. With the 
combination of FM, CM, and IM, we always have the highest recognition rate in indoor and 
outdoor datasets with rates of about 94-98% and 86-90%, respectively. 

 
Table 5. All cases of combination from FM, CM , and IM based on four datasets. 

KoFace Database Indoor 1 Indoor 2 Outdoor 1 Outdoor 2 
Baseline 74.67% 82.67% 61.33% 65.33% 
FM 88% 89.67% 77.33% 76% 
CM 75% 83.33% 62% 66.33% 
IM 81.33% 84% 71.33% 70.67% 
FM + CM 94.67% 93.33% 82.67% 80% 
FM + IM 96.67% 94% 86.33% 81.33% 
CM + IM 88% 86.67% 73.33% 74% 
FM + CM + IM 97.33% 94.67% 89.33% 86.67% 

 
The contribution of FM, CM and IM is demonstrated in Fig. 19 in comparison with the 

GMM baseline approach. Fig. 20 more clearly shows the increasing degree of FM, FM + CM, 
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FM + IM, and FM + CM + IM in each indoor and outdoor dataset. They nearly converge to 
100% in the case with little illumination, and to 90% in the case of diverse illumination. 

Figs. 21a and Figs. 21b illustrate us the ROC curve of our face recognition method with 
and without the visual observation confidence. The x axis represents the false positive rate and 
the y axis represents the true positive rate. The experiment for this case was conducted on an 
indoor dataset with 75 images for the training set (5 images x 15 face subjects). 

The ROC curve with the visual observation confidence has an Area Under Curve (AUC) 
(0.7219) larger than the ROC curve with no visual observation confidence (AUC = 0.5938) in 
the same case. This means that the GMM classifier using the VOC value is better than the 
GMM classifier without the VOC value. 
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Fig. 19. Contribution of FM and IM in indoor and outdoor datasets 

 

 
Fig. 20. Convergence of the proposed approach in the case of indoor and outdoor datasets. 
 
In Fig. 21c, the relationship between the true positive and the false positive rate and the 

number of samples of the indoor dataset is shown. The x axis is the number of testing samples 
from 0 to 75 testing images and the y axis is the true positive and false positive rates. The pink 
and red points represent the true positive and false positive rates obtained using VOC. 
Similarly, the blue and green points represent the true positive and false positive rates with no 
VOC value. The pink points are always higher than the blue points and the red points are  
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Fig. 21.  (a) ROC of indoor dataset with VOC participation. (b) ROC of indoor dataset without VOC 
participation. (c) Relationship between true positive/false positive rate and the number of samples. 

 
always lower than the green points. This means that the VOC makes a significant contribution 
to the GMM face recognition process in increasing the true positive rate and reducing the 
effect of the false positive rate. In summary, using the visual observation confidence is a 
reliable approach to help GMM-based recognition systems to obtain higher accuracy. 

5. Conclusion 
We proposed a GMM-based face recognition approach using the visual observation 

confidence to deal with the problem of illumination impacts effectively and completely. We 
defined the Flatness Measure (FM), Centrality Measure (CM), and Illumination Normality 
Measure (IM). These measurements reflect three characteristics of one feature vector: the 
discrimination, distance, and illumination. And VOC is the linearly optimal combination of 
these measurements. In GMM-base face recognition approach, we include some modifications 
in EM algorithms and the classification process. The experimental results showed that the 
proposed approach can work well with many types of databases.   
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