• Title/Summary/Keyword: Outage duration

Search Result 42, Processing Time 0.03 seconds

Minimum Duration Outage of a DS-CDMA Cellular System Due to Cell Traffic Intensity (Cell Traffic Untensity 에 따른 DS-CDMA 셀룰러 시스템의 최소기간 차단율)

  • Kim, Nam-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.570-575
    • /
    • 2001
  • The minimum duration outage probability of a cellular system is defined the probability that the received signal level is hold under minimum required threshold duration. This definition is more realistic compared to the outage probability which is the received signal strength level is below predefined threshold level. Especially, in a DS-CDMA cellular system the received signal-to-interference ratio is a function of cell traffic, while the former researches are only considered the minimum duration outage probability independent of the cell traffic. We noticed that the minimum outage probability is rapidly increases as cell traffic increase.

  • PDF

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Assessment of Reliability in the Distribution System of an Industrial Complex

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.201-207
    • /
    • 2007
  • As the power industry moves towards open competition, there has been a need for methodology to evaluate distribution power system reliability by using customer interruption costs, particularly in power supply zones under the competitive electricity market. This paper presents an algorithm to evaluate system average interruption duration index, expected energy not supplied, and system outage cost taking into consideration failure rate of the distribution facility and industrial customer interruption cost. Also, to apply this algorithm to evaluate system outage cost presented in this paper, the distribution arrangement of a dual supply system consisting of mostly high voltage customers in an industrial complex in Korea is used as a sample case study. Finally, evaluation results of system interruption cost, system average interruption duration index, and expected energy not supplied in the sample industrial complex area are shown in detail.

Development of Outage Cost Impact Index Function of Electricity Energy and Outage Cost Assessment using WOROCAIS (전력에너지 공급지장비의 충격도지수 함수개발 및 WOROCAIS를 이용한 이의 추정에 관한 연구)

  • Lim, Jin-Taek;Choi, Jae-Seok;Jeon, Dong-Hoon;Seo, Chul-Soo;Lee, Jae-Gul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1066-1073
    • /
    • 2013
  • This paper illustrates newly an outage cost impact index function(OCIIF). The assessment of the OCIIF is described using the Web Based Online Real-time Outage Cost Assessment and Information System(WOROCAIS) for power system outage cost assessment in Korea. The proposed OCIIF is not absolute but relative outage cost impact index function in view point of outage time using web based survey method for outage cost assessment. While conventional methodology does not consider short time outage cost assessment, the proposed OCIIF reflects short time outage. SCOF(Sector Customer Outage Function) in stead of the traditional SCDF(Sector Customer Damage Function) is defined and proposed newly in this paper. Based the SCOF, AVLL(Average Value of Loss Load) is newly proposed. The OCIIF is demonstrated by WOROCAIS in case study around 2,000 sample data surveyed by KEPCO in South Korea in recent.

Development of a Numerical Analysis Method for the Outage Cost Assessment at Load Points (부하지점별 공급지장비추정을 위한 수치해석적 방법의 개발)

  • Choi, Jae-Seok;Kim, Hong-Sik;Moon, Seung-Pil;Kang, Jin-Jong;Kim, Ho-Yong;Park, Dong-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.549-557
    • /
    • 2000
  • This study proposes a new numerical analysis method for assessing the outage cost of the composite power system with considering transmission system at load points. The proposed method comes from combination of the expected energy not served curve(EENSC) with the marginal outage cost function obtained at load points. Uncertainty of the outages of the generation and transmission systems was also included in this study. This study can be categorized into three processing parts as like as follows. Firstly, EENSC at load points was developed newly from the composite power system effective load duration curve which has been proposed by the authors. Secondly, this study proposes a new technical method for determining the coefficients of the marginal outage cost functions at load points in the composite power system(Generation and Transmission systems). It is a main key point that the mathematical expression for the marginal outage cost function at a load point is formulated and evaluated using relations between the GNP (or GDP) and the electrical energy demand at the load pint. Finally, the outage cost was calculated in this paper by combining the proposed EENSC with the marginal outage cost function evaluated at each load point. It is another important feature that the average costs for future at load points can be forescasted using the proposed approach. The effectiveness of the proposed new approach is demonstrated by the case studies with the IEEE-RTS.

  • PDF

Distribution System Reliability Evaluation Considering Protective System (보호시스템을 고려한 배전계통의 신뢰도 평가)

  • Kim, S.H.;Jwa, C.K.;Choi, B.Y.;Choi, S.H.;Kim, J.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1003-1005
    • /
    • 1997
  • To evaluate the quality of a system or its ability to perform a required function, it is necessary to quantify the reliability of that system. The reliability techniques are based on the concept of expected failure rate and average-outage-duration method. For each load point, the expected failure rate, average outage duration and average annual outage time are evaluated. This paper deals with the reliability evaluation for distribution system including the protection relay system. In evaluating the reliability, it suggests a method for the analysis of protective system reliability, that provides a probabilistic measure of the success of the protective apparatus to perform its intended function. The analysis shows the dependency of success on the reliability of many components, and the way this reliability may be enhanced by redundancy.

  • PDF

Integrated Head Area Design of KNGR to Reduce Refueling Outage Duration

  • Jeong, Woo-Tae;Park, Chi-Yong;Kim, In-Hwan;Kim, Dae-Woong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.351-356
    • /
    • 1997
  • In the des19n of KNGR (Korea Next Generation Reactor), we believe that economy is one of the most important factors to be considered Thus, we reviewed and evaluated the consequences of designing the head area into an integrated package from an economical point of view. The refueling outage durations of the nuclear power plants currently in operation In Korea, some having and others not having integrated head package, are compared. This paper discusses the characteristics of head area design and the critical design issues of KNGR head area to evaluate the effect of the head area characteristics on the outage duration.

  • PDF

Development of Outage Data Management System to Calculate the Probability for KEPCO Transmission Systems (한전계통의 송전망 고장확률 산정을 위한 상정고장 DB 관리시스텀(ezCas) 개발)

  • Cha S. T.;Jeon D. H.;Kim T. K.;Jeon M. R.;Choo J. B.;Kim J. O.;Lee S .H
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.88-90
    • /
    • 2004
  • Data are a critical utility asset. Collecting correct data on site leads to accurate information. Data, when gathered with foresight & properly formatted, are useful to both existing database and easily transferable to newer, more comprehensive historical outage data. However, when investigating data items options, the task, can be an arduous one, often requiring the efforts of entire committees. This paper firstly discusses the KEPCO's past 10 years of historical outage data which include meterological data, and also by several elements of the National Weather Service, failure rate, outage duration, and probability classification, etc. Then, these collected data are automatically stored in an Outage Data Management System (ODMS), which allows for easy access and display. ODMS has a straight-forward and easy-to-use interface. It lets you to navigate through modules very easily and allows insertion, deletion or editing of data. In particular, this will further provide the KEPCO that not only helps with probabilistic security assessment but also provides a platform for future development of Probability Estimation Program (PEP).

  • PDF

Space Service Volume Augmented with Korean Positioning System at Geosynchronous Orbit

  • Kim, Gimin;Park, Chandeok;Lim, Deok Won
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.327-336
    • /
    • 2020
  • This study presents signal availability of inter-operable global navigation satellite system (multi-GNSS) combined with future Korean Positioning System (KPS), specifically at geosynchronous orbit (GSO). The orbit of KPS, which is currently under conceptual feasibility study, is first introduced, and the grid points for evaluating space service volume (SSV) at GSO are generated. The signal observabilities are evaluated geometrically between those grid points and KPS/GNSS satellites. Then, analyzed are the visibility averaged over time/space and outage time to not access one or four signals. The reduction of maximum outage time induced by KPS are presented with different maximum off-boresight angles depending on L1/E1/B1 and L5/L3/E5a/B2 frequencies. Our numerical analysis shows that the SSV of multi-GNSS combined with KPS provides up to 7 additional signals and could provide continuous observation time (zero outage time) of more than four GNSS or KPS signals for 3.20-14.83% of SSV grid points at GSO. Especially at GSO above North/South America and Atlantic region, the introduction of KPS reduces the outage duration by up to 63 minutes with L1/E1/B1 frequency.

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.