• Title/Summary/Keyword: Out-plane

검색결과 1,973건 처리시간 0.029초

고분자 수지 이송 성형에서 브레이드 프리폼의 두께방향 투과율 계수 측정 (Out-of-Permeability Measurement of the Braided Preform in Resin Transfer Molding)

  • Suk, Chae-Hui;Seok, Song-Yeong;Ryun, Yun-Jae
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2003
  • In Resin transfer molding (RTM), composite parts are produced by impregnation of a dry reinforcement with liquid matrix resin. Permeability is a key issue in this process. For thin parts, the resin flow in the thickness direction can be neglected. Therefore thin parts are considered as two-dimensional composites. However the resin flow through the thickness is important to thicker parts and we have to consider out-of-plane permeability. This work discusses a method to measure out-of-plane permeability. The flow rate and pressure drop across the porous media were measured. Also one dimensional form of Darcy's law is applied to calculate the out-of-plane permeability of various preforms. The flow is injected uniformly into layers of the preform. And a circular fiber mat with 6cm diameter was cut and flattened from cylindrical mandrel.

  • PDF

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.

축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체 (RC Wall under Axial Force and Biaxial Bending Moments)

  • 박홍근
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.113-124
    • /
    • 1998
  • 축력과 면내 및 면외의 두방향 휨모멘트를 받는 철근콘크리트 벽체에 대한 비선형 해석연구를 수행하였으며 , 해석결과를 분석하여 벽체의 강도산정법을 유도하였다. 비선형 해석연구를 위하여 철근콘크리트 벽체에 대한 재료 및 기하학적 비선형 해석을 수행할 수 있는 유한요소 해석방법을 개발하였다. 철근콘크리트의 재료모델로서 소성이론과 파괴모델의 통합모델을 사용하였다. 철근콘크리트 벽체에 대한 해석결과를 토대로 단면의 응력분포를 이상화하였으며, 이를 이용하여 새로운 강도산정법을 개발하였다. 이 방법에 따르면, 면외 휨모멘트에 의하여 단위길이의 벽체가 지지할 수 있는 축력이 결정되며, 이 허용 단위 축력에 따라서 총 축력과 면내 휨모멘트의 상호관계곡선이 결정된다. 면외 휨모멘트가 증가할수록 축력과 면내 휨모멘트의 상호관계곡선이 축소되며 이는 벽체 강도의 감소를 가리킨다. 이 새로운 방법을 , 휨변형후에도 단면이 평면으로 유지된다는 가정을 사용하는 기존의 강도산정법과 비교한다. 이 비교결과에 따르면 , 새로운 방법에 비하여 기존의 방법은 면외 휨모멘크가 작은 영역에서 벽체의 강도를 과소평가하며, 면외 휨모멘트가 큰 영역에서는 벽체의 강도를 과대평가한다.

Non-linear modeling of masonry churches through a discrete macro-element approach

  • Panto, Bartolomeo;Giresini, Linda;Sassu, Mauro;Calio, Ivo
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.223-236
    • /
    • 2017
  • Seismic assessment and rehabilitation of Monumental Buildings constitute an important issue in many regions around the world to preserve cultural heritage. On the contrary, many recent earthquakes have demonstrated the high vulnerability of this type of structures. The high nonlinear masonry behaviour requires ad hoc refined finite element numerical models, whose complexity and computational costs are generally unsuitable for practical applications. For these reasons, several authors proposed simplified numerical strategies to be used in engineering practice. However, most of these alternative methods are oversimplified being based on the assumption of in-plane behaviour of masonry walls. Moreover, they cannot be used for modelling the monumental structures for which the interaction between plane and out-plane behaviour governs the structural response. Recently, an innovative discrete-modelling approach for the simulation of both in-plane and out of-plane response of masonry structures was proposed and applied to study several typologies of historic structures. In this paper the latter model is applied with reference to a real case study, and numerically compared with an advanced finite element modelling. The method is applied to the St.Venerio church in Reggiolo (Italy), damaged during the 2012 Emilia-Romagna earthquake and numerically investigated in the literature.

Behavior of high-strength fiber reinforced concrete plates under in-plane and transverse loads

  • Ramadoss, P.;Nagamani, K.
    • Structural Engineering and Mechanics
    • /
    • 제31권4호
    • /
    • pp.371-382
    • /
    • 2009
  • The concrete plates are most widely used structural elements in the hulls of floating concrete structures such as concrete barges and pontoons, bridge decks, basement floors and liquid storage tanks. The study on the behavior of high-strength fiber reinforced concrete (HSFRC) plates was carried out to evaluate the performance of plates under in-plane and transverse loads. The plates were tested in simply supported along all the four edges and subjected to in-plane and traverse loads. In this experimental program, twenty four 150 mm diameter cylinders and twelve plate elements of size $600{\times}600{\times}30$ mm were prepared and tested. Water-to-cementitious materials ratios of 0.3 and 0.4 with 10% and 15% silica fume replacements were used in the concrete mixes. The fiber volume fractions, $V_f$ = 0%, 1% and 1.5% with an aspect ratio of 80 were used in this study. The HSFRC mixes had the concrete compressive strengths in the range of 52.5 to 70 MPa, flexural strengths ranging from 6.21 to 11.08 MPa and static modulus of elasticity ranging from 29.68 to 36.79 GPa. In this study, the behavior of HSFRC plate elements subjected to combined uniaxial in-plane and transverse loads was investigated.

체적 적분방정식법을 이용한, 다수의 함유체를 포함한 반무한 고체에서의 탄성해석 (Elastic Analysis of a Half-Plane Containing Multiple Inclusions Using Volume Integral Equation Method)

  • 이정기;구덕영
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.148-161
    • /
    • 2008
  • A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions subject to remote loading. A detailed analysis of stress field at the interface between the matrix and the central inclusion in the first column of square packing is carried out for different values of the distance between the center of the central inclusion in the first column of square packing of inclusions and the traction-free surface boundary in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions. The method is shown to be very accurate and effective for investigating the local stresses in an isotropic elastic half-plane containing multiple isotropic or anisotropic inclusions.

등기하개념을 이용한 평면구조물의 자유진동해석 (Free Vibration Analysis of Plane Structures with Isogeometric Concept)

  • 이상진
    • 대한건축학회논문집:구조계
    • /
    • 제35권9호
    • /
    • pp.171-182
    • /
    • 2019
  • Isogeometric concept is introduced to carry out free vibration analysis of plane structures. The geometry of structures is represented by using non-uniform rational B-spline surface (NURBS) and its basis function is consistently used in the formulation of plane stress element. In addition, multi-patch strategy is introduced to deal with the openings in building. The performance of the present isogeometric plane stress element is investigated by using five numerical examples. From numerical results, it is found to be that the isogeometric concept can successfully identify reliable natural frequencies and associated mode shapes of plane structures with/without openings in efficient way.

면외 워핑함수를 고려한 보 구조물의 기계 및 열응력 해석 (A Thermal Stress Analysis of Beams with Out-of-Plane Warping)

  • 정용민;김준식
    • 한국전산구조공학회논문집
    • /
    • 제29권3호
    • /
    • pp.229-235
    • /
    • 2016
  • 본 논문에서는 기존에 개발된 생브낭의 원리를 이용한 응력개선방법에 부가적인 면외 워핑함수를 도입하여 후처리함으로써 기계 및 열응력을 개선할 수 있는 방법을 소개하였다. 열응력 예측이 중요한 문제로 다루어지고 있으며, 이에 따라 수많은 보이론들이 개발되어왔다. 일반적으로 고차이론들이 열응력 예측에 유용하다고 알려져 있지만, 자유도가 많아 계산과정이 복잡하다는 단점이 존재한다. 이러한 단점들을 보완하기 위해, 본 연구에서는 계산이 비교적 간단한 고전 보이론의 변위장에 면외 워핑함수를 부가적으로 도입하고 합응력 등가를 통해 후처리함으로써 보 구조물의 열응력을 정확하게 예측할 수 있는 방법을 제시하였다. 그리고 다양한 경계조건을 가지는 수치예제들을 통해 탄성해와 비교함으로써 그 정확도를 검증하고, 면외 워핑함수가 응력개선에 미치는 영향에 대해 분석하였다.

NC 선반의 정면 운동정도 측정장치의 개발 (Development of plane Motion Accuracy Measurement Unit of NC Lathe)

  • 김영석;한지희;정정표;윤원주;송인석
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.101-106
    • /
    • 2004
  • Measurements of linear motion accuracy for one axis of NC lathe have achieved with laser interferometer system, but measurement of plane motion accuracy for two axes on zx-plane of NC lathe have not achieved with the above system. Therefore in this study, measuring unit system is organized using two optical linear scales in order to acquire error. data during of plane motion of ATC(Automatic Tool Change.) of NC lathe by reading zx-plane coordinates. Two optical linear scales of measuring unit are fixed on zx-plane of NC lathe, and moving part of the scales are fixed to the ATC and then error motion data of z, x-coordinates of the ATC are received from the scales through the PC counter card inserted in computer at constant time intervals using tick pulses coming out from computer. And then, error motion data files acquired from measuring are saved in computer memory and the aspect of plane motion are modeled to plots, and range of the error data, means. average deviations, and standard deviations etc. are calculated by means of statistical treatments using computer programs.

Analytical modeling of thin-walled box T-joints

  • Marur, Prabhakar R.
    • Structural Engineering and Mechanics
    • /
    • 제32권3호
    • /
    • pp.447-457
    • /
    • 2009
  • A general analytical method for computing the joint stiffness from the sectional properties of the members that form the joint is derived using Vlasov's thin-walled beam theory. The analytical model of box T-joint under out-of-plane loading is investigated and validated using shell finite element results and experimental data. The analytical model of the T-joint is implemented in a beam finite element model using a revolute joint element. The out-of-plane displacement computed using the beam-joint model is compared with the corresponding shell element model. The results show close correlation between the beam revolute joint model and shell element model.