The financial statements purpose to provide useful information to decision-making process of business managers. The value-relevant information, however, embedded in the financial statement has been often overlooked in Korea. In fact, the financial statements in Korea have been utilized for nothing but account reports to Security Supervision Boards (SSB). The objective of this study is to develop earnings forecasting models through financial statement analysis using artificial intelligence (AI). AI methods are employed in forecasting earnings: artificial neural networks (ANN) for manufacturing industry and case~based reasoning (CBR) for banking industry. The experimental results using such AI methods are as follows. Using ANN for manufacturing industry records 63.2% of hit ratio for out-of-sample, which outperforms the logistic regression by around 4%. The experiment through CBR for banking industry shows 65.0% of hit ratio that beats the statistical method by 13.2% in holdout sample. Finally, the prediction results for manufacturing industry are validated through monitoring the shift in cumulative returns of portfolios based on the earning prediction. The portfolio with the firms whose earnings are predicted to increase is designated as best portfolio and the portfolio with the earnings-decreasing firms as worst portfolio. The difference between two portfolios is about 3% of cumulative abnormal return on average. Consequently, this result showed that the financial statements in Korea contain the value-relevant information that is not reflected in stock prices.
최근 교통량 예측을 위한 인공 신경망(Artificial neural networks : ANNs) 구조와 학습방법에 대한 연구가 다양하게 시도되고 있다. 이것은 신경망이 유연한 비선형 모형(non-linear model)으로 강력한 패턴 인식 능력을 가지고 있기 때문이다. 그러나, 신경망은 비선형 모형이기 때문에 많은 매개변수(parameter)를 사용하게 되면서 과적합(overfitting) 문제에 부딪히게 된다. 본 논문에서는 이러한 교통량 예측을 위한 신경망 모형에서 과적합을 해소하기 위한 방안으로 매개변수에 대한 다양한 모형선택기준(model selection criterion)에 대한 적용성에 대해서 알아보았다. 특히, AIC계열을 중심으로 모형선택기준으로 선택된 모형이 과적합 경향을 해소하고 시간적 전이성을 보장할 수 있는지를 분석하는데 본 연구의 목적을 두고 있다. 교통량 자료를 신경망 모형에 적용하여 분석한 결과, 첫째 학습자료(in-sample) 모형선택기준에 의해 선택된 모형이 검증자료(out-of-sample)의 최적의 성능을 보장하지는 못한다는 결과를 얻었다. 즉, 본 연구에서 기존의 연구에서처럼, 학습자료(in-sample)의 최적 모형이 검증자료(out-of-sample)의 성능과 직접적인 관계가 없다는 것을 알 수 있었다. 둘째 모형선택기준의 안정성을 분석한 결과 AIC3, AICC, BIC는 안정적인 모형을 선택하는 기준으로서 의미가 있는 것으로 분석되었다. 하지만, AIC4의 경우는 최상의 모형과 편차가 큰 것으로 분석되었다. 시계열 자료 분석과 예측에 있어서 모형의 불확실성은 학습 자료와 검증 자료의 상관관계에 영향을 줄 수 있음에 비춰볼 때, 앞으로 보다 많은 자료에 대한 분석이 필요하다고 판단되며, 다른 시계열 자료에 대한 분석이 요구된다. 수 없었지만, 확정적 통행배정모형으로 설정한 경우, Stackelberg게임 접근법이 Cournot-Nash게임 접근법 보다 더 우수함을 확인할 수 있었다.다.수안보 등 지역에서 나타난다 이러한 이상대 주변에는 대개 온천이 발달되어 있었거나 새로 개발되어 있는 곳이다. 온천에 이용하고 있는 시추공의 자료는 배제하였으나 온천이응으로 직접적으로 영향을 받지 않은 시추공의 자료는 사용하였다 이러한 온천 주변 지역이라 하더라도 실제는 온천의 pumping 으로 인한 대류현상으로 주변 일대의 온도를 올려놓았기 때문에 비교적 높은 지열류량 값을 보인다. 한편 한반도 남동부 일대는 이번 추가된 자료에 의해 새로운 지열류량 분포 변화가 나타났다 강원 북부 오색온천지역 부근에서 높은 지열류량 분포를 보이며 또한 우리나라 대단층 중의 하나인 양산단층과 같은 방향으로 발달한 밀양단층, 모량단층, 동래단층 등 주변부로 NNE-SSW 방향의 지열류량 이상대가 발달한다. 이것으로 볼 때 지열류량은 지질구조와 무관하지 않음을 파악할 수 있다. 특히 이러한 단층대 주변은 지열수의 순환이 깊은 심도까지 가능하므로 이러한 대류현상으로 지표부근까지 높은 지온 전달이 되어 나타나는 것으로 판단된다.의 안정된 방사성표지효율을 보였다. $^{99m}Tc$-transferrin을 이용한 감염영상을 성공적으로 얻을 수 있었으며, $^{67}Ga$-citrate 영상과 비교하여 더 빠른 시간 안에 우수한 영상을 얻을 수 있었다. 그러므로 $^{99m}Tc$-transierrin이 감염 병소의 영상진단에 사용될 수 있을 것으로 기대된다.리를 정량화 하였다. 특히 선조체에서의 도파민 유리에 의한 수용체 결합능의 감소는 흡연에 의한 혈중 니코틴의 축적 농도와 양의 상관관계를 보였다
본 연구에서는 국제 유연탄 가격을 대상으로 다양한 형태의 예측모형을 설정하고, 이들 예측모형을 토대로 기존의 구매전략과 대비하여 선택적 구매전략의 수익흐름을 산출하여, 구매전략에 따른 수익향상 및 수익안정화 효과를 분석한다. 실증분석에서는 대표적인 국제 유연탄 선도가격을 대상으로 일률적 구매전략과 대비하여 두 가지의 선택적 구매전략에 따른 수익향상 및 수익안정화 효과를 예측모형별, 예측기간별로 상호 비교한다. 여기서, 수익향상 및 수익안정화 효과는 구매전략별 수익흐름의 분포, 즉 평균과 표준편차를 상호 비교하여 분석한다. 예측모형을 토대로 기존의 구매전략과 대비하여 선택적 구매전략의 수익향상 및 수익안정화 효과에 대한 실증분석 결과는 다음과 같다. 일률적 구매전략의 경우와 비교하여 선택적 구매전략을 활용하는 경우 (일부 모형과 기간을 제외하고) 예측모형과 예측기간에 관계없이 수익의 단순평균은 증가한다. 반면, 수익의 표준편차는 감소한다. 예측기간이 길어질수록 단순평균의 증가폭도 커지는 반면, 표준편차의 감소폭은 상이하게 나타난다. 예측기간별로 약간의 차이는 있지만, 일부 예측모형이 다른 예측모형에 비해 단순평균과 표준편차 측면에서 우월한 것으로 나타난다.
This study examines the impact of sentiment shock, which is defined as a stochastic innovation to the Housing Market Confidence Index (HMCI) that is orthogonal to past housing price changes, on aggregate housing price changes and housing price volatility. This paper documents empirical evidence that sentiment shock has a statistically significant relationship with Korea's aggregate housing price changes. Specifically, the key findings show that an increase in sentiment shock predicts a rise in the aggregate housing price and a drop in its volatility at the national level. For the Seoul Metropolitan Region (SMR), this study also suggests that sentiment shock is positively associated with one-month-ahead aggregate housing price changes, whereas an increase in sentiment volatility tends to increase housing price volatility as well. In addition, the out-of-sample forecasting exercises conducted here reveal that the prediction model endowed with sentiment shock and sentiment volatility outperforms other competing prediction models.
우리나라 소비자물가상승률에 대한 예측은 한국은행의 물가안정목표제 운용, 채권시장 참가자의 만기 포트폴리오 최적화, 부동산 시장 및 민간의 소비와 투자 등 경제 전반에 지대한 영향을 미친다. 본 연구는 향후 3년간 우리나라 소비자물가상승률 예측결과를 제시한다. 이를 위해 우선 자기회귀시차(Autoregressive Distributed Lag, ADL) 모형, AR 모형, 소규모 벡터자기회귀(VAR) 모형, 대규모 VAR 모형의 표본외 예측력을 기준으로 모형선택을 실시한다. 물가상승률에는 다수의 잠재적인 예측변수가 존재하기 때문에 12개의 거시변수를 대상으로 ADL 모형에 베이지안 변수선택기법을 도입하고, 예측력 향상을 위한 정밀한 튜닝과정을 고안하고 적용하였다. VAR 모형에는 미네소타 사전분포를 설정하여 차원의 저주 문제를 극복하고자 하였다. 최근 5년을 대상으로 한 장단기 표본외 예측결과, ADL 모형이 점예측과 분포예측 모두에서 여타 경쟁모형에 비해 전반적으로 우월하였다. 예측조합을 통한 예측결과, 우리나라 소비자물가상승률이 2022년 하반기까지는 현재 비슷한 2% 내외의 수준을 유지할 것으로 보이며, 2023년 상반기부터는 1% 내외로 하락할 것으로 전망된다. 80% 신용구간은 예측치의 대략 ±1%p이다.
Communications for Statistical Applications and Methods
/
제26권5호
/
pp.497-506
/
2019
Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.
In order to forecast the progress of the track irregularity, we should observe the long-term track quality and divide a track into some separated divisions which have homogeneous property. For this, we define the division of track which has homogeneous property as a 'Segment' and manage the 'TQI(Track Quality Index)' using track induction data based on each segment. In this study, we introduce some methods of estimating track quality and figure out the TQIs of sample section using new FRA TQI method. In addition, we conducted a basic study of the forecasting model for the progress of track irregularity by analyzing track maintenance data.
Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expect it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. Above factors make the sales dynamic and unstable. We develop a time series model to evaluate the sales patterns with stockpiling and short term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.
2011년 세계경기는 그리 밝지 않은 것으로 전망되고 있다. 금년 11월 미국 정부가 6,000억 달러라는 천문학적 규모의 양적 완화를 발표하였음에도 별다른 효과를 기대하지 않을 정도로 세계경제에 대한 전망이 흐린 것이다. 글로벌 불균형과 환율문제에서의 국가간 갈등, 국제통화제도의 불안정 등도 경기회복을 더디게 하는 요인으로 지목되고 있다. 그런데 해운경기와 세계경제는 밀접한 연관성을 갖기 때문에 당연히 해운경기에 대한 전망이 밝지 않다. 본고는 2011년의 해운경기를 예측하기 위하여 단변량 모형인 4개의 ARIMA 모형과 6개의 개입ARIMA모형을 이용한다. 먼저 사후적 예측을 하여 10개의 모형의 RMSPE가 비교적 높을 뿐만 아니라 RW 모형의 그것보다 높아 동 모형을 이용한 예측이 부정확할 수 있음을 보인다. 그러나 이러한 점은 예측치에 대한 부정확을 의미하는 것이지 2011년 해운경기의 흐름에 대한 예측을 거부하는 것은 아니다. 사전적 예측을 통해 모형간 예측치가 비교적 큰 차이를 보이나 2011년 내내 침체 상태에 있거나 2011년 후반기에 침체상태로 접어든다는 것을 밝힌다. 해운업계에 어려운 시기가 될 수 있다는 것을 시사한다.
해상운임의 변동은 해운업계에만 영향을 미치는데 그치지 않고 전후방 연쇄효과를 통해 조선업계를 비롯하여 경제 전반에 영향을 미친다. 따라서 해상운임의 움직임을 정확히 예측하는 것은 해운업계 뿐만 아니라 우리나라 경제에도 중요한 의미를 갖게 된다. 그러나 해상운임은 주가나 환율과 같이 다양한 요인에 의해 결정될 뿐만 아니라 최근 들어 운임의 변동성이 크게 커지는 추세이어서 예측에 상당한 어려움이 있다. 본고는 2010년의 BDI를 예측하기 위하여 가장 단순한 모형인 단변량모형인 ARIMA 모형, 개입ARIMA모형, HP 모형을 이용한다. 개입ARIMA 모형은 글로벌 금융위기와 중국효과가 미친 효과를 분석하기 위한 것이다. ARIMA모형은 2010년 말에 4,230-4.690에 도달할 것으로, 개입ARIMA모형은 낙관적인 경우 4,460-4,900선에, 비관적일 경우 2,820-2,940선이 될 것으로 예상하여 모형별로 상당한 차이를 드러내고 있다. 그런데 HP 모형에 의한 예측치는 기준 역할을 하므로 HP모형에 의한 2010년 말 예측치 3,500 포인트를 감안하면 2010년 12월에 2,820-4,230의 범주에 도달할 것으로 예측된다. 2010년 12월 2,800 포인트는 해운업계에 어두운 그림자를 드리우는 예측치이다. 그러나 낙관적인 2010년 12월 4,000포인트는 2008년 BDI가 10,000 포인트를 넘어선 때를 기억하면 그리 높게 생각되지 않을 수 있으나 4,000 포인트 이상의 BDI는 해운관련업계에게 어느 정도의 안도감을 주고 재도약을 할 수 있는 기반을 제공할 수 있는 수준으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.