• Title/Summary/Keyword: Out-of-plane motion

Search Result 165, Processing Time 0.029 seconds

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

Path Tracking Control Based on RMAC in Horizontal Plane for a Torpedo-Shape AUV, ISiMi (RMAC를 적용한 어뢰형 무인잠수정(ISiMi)의 수평면 경로추종 제어)

  • Kim, Young-Shik;Lee, Ji-Hong;Kim, Jin-Ha;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.146-155
    • /
    • 2009
  • This paper considers the path tracking problem in a horizontal plane for underactuated (or non-holonomic) autonomous underwater vehicles (AUVs). Underwater mapping has been an important mission for AUVs. Recently, underwater docking has also become a main research field of AUVs. These kinds of missions basically require accurate attitude and trajectory control performance. However, the non-holonomic problem should be solved to achieve accurate path tracking for the torpedo-type of AUVs. In this paper, resolved motion and acceleration control (RMAC) is considered as a path tracking controller for an underactuated torpedo-shaped AUV, ISiMi. A set of numerical simulations is carried out to illustrate the effectiveness of the proposed RMAC scheme, and experimental data with ISiMi100 and discussions are presented.

The Kinematic Analysis of Fouette A La Second in Cheerleading (치어리딩의 푸에떼 아라스공드 (Fouette A La Second) 동작의 운동학적 분석)

  • Yeon, Eun-Jung;Ryu, Jae-Kyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.173-181
    • /
    • 2012
  • The purpose of this study was to research on the movement of Fouette A La Second which was a type of turning movements on cheerleading. This research was conducted for helping cheerleaders to improve their overall skills. The three cheerleading national team members were participated in this research and the movements of Fouette A La Second were recorded with 6 digital motion master 60 video cameras, operating at a sampling frequency of 60 fields/sec. Six out of ten turning motion data were collected and analyzed with Kwon3D XP. The results were as follow: 1) The subject A's Releve motion was not executed precisely because of the COG's unstability. So she was required to improve the balancing ability. 2) The subject B could not execute the precise A La Second motion because of subject B's large hip angle. By tracing the projection of B's right toe on x-y plane, the subject made an elliptical orbit. Because B did not have a proper turning skills she needed to improve the muscle power and flexibility. She also needed to move quickly from Releve to Plie movement. 3) The subject C could not execute the Plie movement precisely, so she could not turn her body correctly around a certain spot. The subject C needed to decrease the knee angle at the Plie motion.

A study on the real time obstacle recognition by scanned line image (스캔라인 연속영상을 이용한 실시간 장애물 인식에 관한 연구)

  • Cheung, Sheung-Youb;Oh, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1551-1560
    • /
    • 1997
  • This study is devoted to the detection of the 3-dimensional point obstacles on the plane by using accumulated scan line images. The proposed accumulating only one scan line allow to process image at real time. And the change of motion of the feature in image is small because of the short time between image frames, so it does not take much time to track features. To obtain recursive optimal obstacles position and robot motion along to the motion of camera, Kalman filter algorithm is used. After using Kalman filter in case of the fixed environment, 3-dimensional obstacles point map is obtained. The position and motion of moving obstacles can also be obtained by pre-segmentation. Finally, to solve the stereo ambiguity problem from multiple matches, the camera motion is actively used to discard mis-matched features. To get relative distance of obstacles from camera, parallel stereo camera setup is used. In order to evaluate the proposed algorithm, experiments are carried out by a small test vehicle.

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.

비정상 와류격자 기법을 이용한 해상용 부유식 풍력발전기의 공력하중특성

  • Jeon, Minu;Kim, Hogeon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The wind can be stronger and steadier further from shore, but water depth is also deeper. Then bottom-mounted towers are not feasible, and floating turbines are more competitive. There are additional motions in an offshore floating wind turbine, which results in a more complex aerodynamics operating environment for the turbine rotor. Many aerodynamic analysis methods rely on blade element momentum theory to investigate aerodynamic load, which are not valid in vortex ring state that occurs in floating wind turbine operations. So, vortex lattice method, which is more physical, was used in this analysis. Floating platform's prescribed positions were calculated in the time domain by using floating system RAO and waves that are simulated using JONSWAP spectrum. The average value of in-plane aerodynamic force increase, but the value of out-of-plane force decrease. The maximum variation aerodynamic force abruptly increases in severe sea state. Especially, as the pitch motion of the barge platform is large, this motion should be avoided to decrease the aerodynamic load variation.

  • PDF

Model-based subpixed motion estimation for image sequence compression (도영상 압축을 위한 모델 기반 부화소 단위 움직임 추정 기법)

  • 서정욱;정제창
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.130-140
    • /
    • 1998
  • This paper presents a method to estimate subpixel accuracy motion vectors using a mathermatical model withoug interpolation. the proposed method decides the coefficients of mathematical model, which represents the motion vector which is achieved by full search. And then the proposed method estimates subpixel accuracy motion vector from achieved mathematical model. Step by step mathematical models such as type 1, type 2, type 3, modified bype 2, modified type 3, and Partial Interpolation type 3 are presented. In type 1, quadratic polynomial, which has 9 unknown coefficients and models the 3by 3 pixel plane, is used to get the subpixel accuracy motion vectors by inverse matrix solution. In type 2 and 3, each quadratic polynomial which is simplified from type 1 has 5 and 6 unknown coefficients and is used by least square solution. Modified type 2 and modified type 3 are enhanced models by weighting only 5 pixels out of 9. P.I. type 3 is more accurate method by partial interpolation around subpixel which isachieved by type 3. LThese simulation results show that the more delicate model has the better performance and modified models which are simplified have excellent performance with reduced computational complexity.

  • PDF

Natural Vibration Analysis of Thick Rings (두꺼운 링의 고유진동 해석)

  • Kim Chang-Boo;Park Jung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.459-466
    • /
    • 2005
  • In this paper, we have systematically formulated the equations concerned to the in-plane and out-of-plane motions and deformations of a thick circular beam by using the kinetic and strain energies in order to analyse natural frequencies of a thick ring. The effects of variation of radius of curvature across the cross-section and also the effects of bending shear, extension and twist are considered. The equations of motion for natural vibration analysis of a ring are obtained utilizing the cyclic symmetry of vibration modes of the ring. The frequencies calculated using thick ring model and thin ring model are compared and discussed with the ones obtained from finite element analysis using the method of cyclic symmetry with 20-node hexahedral solid elements for rings with the different ratio of radial thickness to mean radius.

  • PDF

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Bang, In-Chang;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.629-634
    • /
    • 2000
  • Dynamic behavior of an automatic dynamic balancer is analyzed by a theoretical approach. Using Lagrange's equation, we derive the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility with respect to the rectangular coordinate. Considering the rotor bending flexibility we analyze out-of-plane vibrations as well as in-plane vibrations of the automatic dynamic balaner. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of rotor flexibility on the behavior of the automatic dynamic balancer

  • PDF