• 제목/요약/키워드: Out-of-Plane Motion

검색결과 163건 처리시간 0.027초

터렛계류된 FPSO의 비선형 운동 해석 (Nonlinear Motion Analysis of FPSO with Turret Mooring System)

  • 임춘규;이호영
    • 대한조선학회논문집
    • /
    • 제40권1호
    • /
    • pp.20-27
    • /
    • 2003
  • The FPSO is moored by mooring lines to keep the position of it. The nonlinear motion analysis of the moored FPSO must be carried out in the initial design stage because sea environments affect motion of it. In this paper, the mathematical model is based on the slow motion maneuvering equations in the horizontal plane considering wave, current and wind forces. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical model of MMG. The turret mooring forces are quasi-statically evaluated by using the catenary equation. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A. The nonlinear motions of FPSO are simulated under external forces due to wave, current, wind including mooring forces in time domain.

회전하는 두꺼운 링의 고유진동 해석을 위한 모델링 (Modeling for the Natural Vibration Analysis of a Rotating Thick Ring)

  • 김창부;김보연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.107-114
    • /
    • 2007
  • In this paper, the equations of motion by which the natural vibration of rotating thick ring can be analyzed accurately are presented. These equations are derived from the theory of finite deformation and the principle of virtual work. The effects of variation in curvature across the ring cross-section can be considered in these equations. The ring models are called as thick ring model and thin ring model respectively as the effects of variation in curvature are considered or neglected. The radial displacement of ring which is rotating at constant angular velocity is determined by a non-linear equation derived from the principle of virtual work. The equations of the in-plane and out-of-plane vibrations at disturbed state are also formulated from the principle of virtual work. They can be expressed as the combination of the radial displacement at the steady state and the disturbed displacements about the steady state. The natural vibrations of rings with different thickness are analyzed by using the presented ring models and 3-dimensional finite element method to verify accuracy of the presented equations of motion. Its results are compared and discussed.

  • PDF

비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구 (Study on the Dynamic Torsional Instability of a Thin Beam)

  • 박진선;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

일정속도 유체를 운반하는 곡관의 유한요소 진동해석 (Finite Element Vibration Analysis of a Curved Pipe Conveying Fluid with Uniform Velocity)

  • 이성현;정의봉;서영수
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1049-1056
    • /
    • 2008
  • A method for the vibration analysis of curved beam conveying fluid with uniform velocity was presented. The dynamics of curved beam is based on the inextensible theory. Both in-plane motion and out-of-plane motion of curved beam were discussed. The finite element method was formulated to solve the governing equations. The natural frequencies calculated by the presented method were compared with those by analytical solution, straight beam theories and Nastran. As the velocity of fluid becomes larger, the results by straight beam model became different from those by curved beam model. And it was shown that the curved beam element should be used to predict the critical velocity of fluid exactly. The influence of fluid velocity on the frequency response function was also discussed.

능동음향진동제어를 위한 센서와 액추에이터의 동위치화 연구 (Collocation of Sensor and Actuator for Active Control of Sound and Vibration)

  • 이영섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.778-783
    • /
    • 2003
  • The problem considered in this paper is about the collocation of sensor and actuator for the active control of sound and vibration. It is well-known that a point collocated sensor-actuator pair offers an unconditional stability with very high performance when it is used with a direct velocity feedback (DVFB) control, because the pair has strictly positive real (SPR) property. In order to utilize this SPR characteristics, a matched piezoelectric sensor and actuator pair is considered, but this pair suffers from the in-plane motion coupling problem with the out-of$.$plane motion due to the piezo sensor and actuator interaction. This coupling phnomenon limits the stability and performance of the matched pair with DVFB control. As a new alternative, a point sensor and piezoelectric actuator pair is also considered, which provides SPR property in all frequency range except at the first resonance in very low frequency. This non-SPR resonance could be minimized by applying a phase lag compensator.

  • PDF

평면내 방향 기진력에 의한 평면밖 방향 운동의 예측 (Prediction of the Out-of-plane Motion due to the In-plane Excitation)

  • ;오일근
    • 한국해양공학회지
    • /
    • 제7권2호
    • /
    • pp.141-149
    • /
    • 1993
  • 삼 자유도를 가진 부유물체의 동적 응답을 이론적으로 연구하였다. 평면내 방향 운동모우드에 대한 지배방정식을 선형화한 후, 그들의 조화해를 평명밖 방향 운동모우드의 방정식과 연성시켰다. 그렇게 해서 주어지는 방정식은 시간에 따라 변화하는 계수를 가진 형태로서, 평면밖 방향의 운동만을 보일 것으로 예측되는 부유물체가 평면밖 방향의 운동을 보일 수도 있음을 밝혔다. 동역학적 불안정성과 그 결과로 나타나는 평면밖 방향의 대진폭 운동을 보이고 있다. 본 결과는 주기적으로 동요하는 부유물체가 서로 연성된 운동을 하는 현상으로도 해석할 수 있다.

  • PDF

NC 선반에서 직선 사이클 평면 위치결정 정도 측정 시스템의 구성 (The Organization of Measuring Systems of Linear Cycle Plane Positioning Accuracy on NC Lathes)

  • 김영석;김재열;송인석;곽이구;정정표;한지희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.387-392
    • /
    • 2002
  • It is very important to measure linear cycle plane positioning accuracy of NC lathes as they affect those of all other machines machined by them in industries. For example, if the linear cycle plane positioning accuracy of each axes directions is bad, the accuracy of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear displacements of ATC(Automatic tool changer) of NC lathes using linear scale and time pulses comming out from computer in order to get data at constant time intervals from the sensors. And each sets of error data gotten from the test is expressed to plots by computer treatment and the results of linear cycle plane positioning error motion estimated to numerics by statistical treatments.

  • PDF

정상인의 견관절 운동범위 및 방사선 투시기를 이용한 운동분율측정 (Normal Range of Shoulder Motion and Fluoroscopic Analysis of Motion Fraction)

  • 최창혁;윤기현
    • Clinics in Shoulder and Elbow
    • /
    • 제1권2호
    • /
    • pp.221-229
    • /
    • 1998
  • 평균 나이 23세.의 건강한 남자 31명을 대상으로 하여 측각도계즐 이용한 견관절운동역을 측정한 결과 Dominant arm과 Non-dominant arm 모두에서 능동운동역에 비해 수동운동역이 증가되었고, 능동운동시 견갑외전, 중립신전, 수평신전, 수평굴곡, 그리고 중립 및 수평내회전에서, 수동운동의 격우에는 견갑외전, 수평굴곡, 그리고 중립 및 수평내회전에서 Non-dominant arm의 운동증가를 보였고, 수평외회전의 경우 Dominant arm의 운동증가소견을 보였다(p〈0.05) .또한 방사선투시기를 이용하여 관절와상완각과 견갑흉곽각의 비(θGH/θST)를 측정해 본 결과 첫째로 Dominant arm과 Non-dominant arm에서 모두 완전거상시 관절와상완각과 견값흥곽각의 비(θGH/θST)는 1.6이었으며 60도이상 150도 거상때까지 지속적으로 견값흉곽운동 분율이 커지는 양상이었다. 둘째천 30도에서 완전거상시까지 운동분율(θGH/θST)은 Dominant arm과 Non-domlnant arm에서 각각 1.2 및 1.3으로 나타났다. 견갑사위는 중립위에서 약 42도였고 거상에 따라 점차 작아졌으며 완전거상시에는 약 20도로 측정되었다. 이렇게 해서 얻어진 방사선조사 각도는 단순방사선 촬영에 적용하여, 견관절 질환 치료 후 운동범위의 회복의 경과를 판정하는데 도움을 줄 수 있을 것으로 생각되었다.

  • PDF

3D 프린터 기반 수직형 마이크로 모션 스테이지의 최적설계 (Optimal Design of 3D Printer based Piezo-driven Vertical Micro-positioning Stage)

  • 김정현
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.78-85
    • /
    • 2017
  • This paper presents the development of a 3D printer based piezo-driven vertical micro-positioning stage. The stage consists of two flexure bridge structures which amplify and transfer the horizontal motion of the piezo-element into vertical motion of the end-effector. The stage is fabricated with ABS material using a precision 3D printer. This enables a one-body design eliminating the need for assembly, and significantly increases the freedom in design while shortening fabrication time. The design of the stage was optimized using response surface analysis method. Experimental results are presented which demonstrate 100nm stepping in the vertical out-of-plane direction. The results demonstrate the future possibilities of applying 3D printers and ABS material in fabricating linear driven motion stages.

해저면 토양마찰력에 의한 원통형 물체의 운동 (Motion of a Cylindrical Object due to Seabed Soil Friction)

  • 최경식;강신영;곽한우
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF