• Title/Summary/Keyword: Otsuka Long-Evans Tokushima fatty (OLETF) rats

Search Result 25, Processing Time 0.023 seconds

Chronic Alcohol Consumption Results in Greater Damage to the Pancreas Than to the Liver in the Rats

  • Lee, Seong-Su;Hong, Oak-Kee;Ju, Anes;Kim, Myung-Jun;Kim, Bong-Jo;Kim, Sung-Rae;Kim, Won-Ho;Cho, Nam-Han;Kang, Moo-Il;Kang, Sung-Koo;Kim, Dai-Jin;Yoo, Soon-Jib
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.4
    • /
    • pp.309-318
    • /
    • 2015
  • Alcohol consumption increases the risk of type 2 diabetes. However, its effects on prediabetes or early diabetes have not been studied. We investigated endoplasmic reticulum (ER) stress in the pancreas and liver resulting from chronic alcohol consumption in the prediabetes and early stages of diabetes. We separated Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a type-2 diabetic animal model, into two groups based on diabetic stage: prediabetes and early diabetes were defined as occurrence between the ages of 11 to 16 weeks and 17 to 22 weeks, respectively. The experimental group received an ethanol-containing liquid diet for 6 weeks. An intraperitoneal glucose tolerance test was conducted after 16 and 22 weeks for the prediabetic and early diabetes groups, respectively. There were no significant differences in body weight between the control and ethanol groups. Fasting and 120-min glucose levels were lower and higher, respectively, in the ethanol group than in the control group. In prediabetes rats, alcohol induced significant expression of ER stress markers in the pancreas; however, alcohol did not affect the liver. In early diabetes rats, alcohol significantly increased most ER stress-marker levels in both the pancreas and liver. These results indicate that chronic alcohol consumption increased the risk of diabetes in prediabetic and early diabetic OLETF rats; the pancreas was more susceptible to damage than was the liver in the early diabetic stages, and the adaptive and proapoptotic pathway of ER stress may play key roles in the development and progression of diabetes affected by chronic alcohol ingestion.

Overexpression of $AMPK{\alpha}1$ Ameliorates Fatty Liver in Hyperlipidemic Diabetic Rats

  • Seo, Eun-Hui;Park, Eun-Jin;Joe, Yeon-Soo;Kang, Soo-Jeong;Kim, Mi-Sun;Hong, Sook-Hee;Park, Mi-Kyoung;Kim, Duk-Kyu;Koh, Hyong-Jong;Lee, Hye-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.449-454
    • /
    • 2009
  • 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric complex consisting of a catalytic ($\alpha$) and two regulatory ($\beta$ and $\gamma$) subunits. Two isoforms are known for catalytic subunit (${\alpha}1$, ${\alpha}2$) and are encoded by different genes. To assess the metabolic effects of $AMPK{\alpha}1$, we examined the effects of overexpression of adenoviral-mediated $AMPK{\alpha}1$ in hyperlipidemic type 2 diabetic rats. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is an established animal model of type 2 diabetes that exhibits chronic and slowly progressive hyperglycemia and hyperlipidemia. Thirty five-week-old overt type 2 diabetic rats (n=10) were administered intravenously with Ad.$AMPK{\alpha}1$. AMPK activity was measured by phosphorylation of acetyl CoA carboxlyase (ACC). To investigate the changes of gene expression related glucose and lipid metabolism, quantitative real-time PCR was performed with liver tissues. Overexpression of $AMPK{\alpha}1$ showed that blood glucose concentration was decreased but that glucose tolerance was not completely recovered on 7th day after treatment. Plasma triglyceride concentration was decreased slightly, and hepatic triglyceride content was markedly reduced by decreasing expression of hepatic lipogenic genes. Overexpression of $AMPK{\alpha}1$ markedly improved hepatic steatosis and it may have effective role for improving hepatic lipid metabolism in hyperlipidemic state.

Antihyperglycemic Effects of Green Tea Extract on Alloxan-Induced Diabetic and OLETF Rats (Alloxan 당뇨쥐(제1형 당뇨병 모델)와 OLETF 쥐(제2형 당뇨병 모델)에서 녹차 추출물의 고혈당 억제 효과)

  • Lee, Byoung-Rai;Koh, Ki-Oh;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.6
    • /
    • pp.696-702
    • /
    • 2007
  • This study was performed to investigate the antihyperglycemic effect of green tea extracts (GTE) in diabetic rats. Experimental animals used were alloxan-induced diabetic Sprague-Dawley (SD) rats; as a model of type 1 diabetes mellitus and Otsuka Long Evans Tokushima fatty (OLETF) rats, and as a model of type 2 diabetes mellitus. Animals were randomly assigned either to continue the ad libitum diet or begin a green tea extracts (GTE) contained diet. GTE extracted from green tea was supplemented in the diet (2%). Body weight, food intake, and blood glucose concentration were recorded for 4 weeks. Animals were killed and glucose, triglyceride, and asparate aminotransferase (AST) were analysed in blood. Food intake was not affected by GTE in both alloxan.induced diabetic and OLETF rats but body weight was slightly decreased by GTE in OLETF rats. The blood glucose concentration was markedly decreased by GTE supplementation in both alloxan-induced diabetic and OLETF rats; however, triglyceride and AST levels in serum of GTE treated animals were not changed. This study shows that GTE beneficially modulate blood glucose concentration in diabetic animals. Dietary supplementation with GTE could potentially contribute to nutritional strategies for the treatment of diabetes mellitus.

LP9M80-H Isolated from Liriope platyphylla Could Help Alleviate Diabetic Symptoms via the Regulation of Glucose and Lipid Concentration (OLETF 당뇨모델동물을 이용한 맥문동 추출물(LP9M80-H)의 당뇨질환에 대한 효능)

  • Kim, Ji-Eun;Hwang, In-Sik;Goo, Jun-Seo;Nam, So-Hee;Choi, Sun-Il;Lee, Hae-Ryun;Lee, Young-Ju;Kim, Yoon-Han;Park, Se-Jin;Kim, Nahm-Su;Choi, Young-Hwan;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.634-641
    • /
    • 2012
  • It was reported that the novel compounds (LP9M80-H) of $Liriope$ $platyphylla$ regulate glucose transporter (Glut) biosynthesis by activating the insulin-signaling pathway in the liver and brain of ICR mice. To investigate the therapeutic effects of LP9M80-H on the pathology of diabetes and obesity, alterations of key factors related to symptoms were analyzed in the Otsuka Long Evans Tokushima Fatty (OLETF) rats treated with LP9M80-H for 2 weeks. The abdominal fat masses in the LP9M80-H-treated group were lower than the vehicle-treated group, although there was no difference in body weight between the two groups. Additionally, when compared to the vehicle-treated group, LP9M80-H treatment induced a significant decrease in glucose levels and an increase in the insulin concentration in the blood of OLETF rats. A high level of insulin protein was also detected in pancreatic ${\beta}$ cells of LP9M80-H-treated OLETF rats. A significant reduction in the concentration of lipids and adiponectin was detected only in LP9M80-H-treated OLETF rats. Furthermore, the expression of insulin receptor ${\beta}$ and the insulin receptor substrate (IRS) was dramatically decreased in LP9M80-H-treated OLETF rats compared to the vehicle-treated group. Of the glucose transporters located downstream of the insulin-signaling pathway, glucose transporters (Glut) -2 and -3 were significantly decreased in LP9M80-H-treated OLETF rats, while the level of Glut-4 was maintained under all conditions. Therefore, these results suggest that LP9M80-H may contribute to relieving symptoms of diabetes and obesity through glucose homeostasis and regulation of lipid concentration.

Therapeutic Potential of Chinese Prescription Hachimi-Jio-Gan and Its Crude Drug Corni Fructus against Diabetic Nephropathy (중국처방전 팔미지황환과 구성생약인 산수유의 당뇨병성 신증에 대한 보호 효과)

  • Park, Chan Hum;Choi, Jae Sue;Yokozawa, Takako
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.3
    • /
    • pp.165-174
    • /
    • 2017
  • Background: Traditional plant drugs, are less toxic and free from side effects compared to general synthetic drugs. They have been used for the treatment of diabetes and associated renal damage. In this study, we evaluated effect of Hachimi-jio-gan against diabetic renal damage in a rat model of type 1 diabetic nephropathy induced by subtotal nephrectomy plus streptozotocin (STZ) injection, and in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and db/db mice as a model of human type 2 diabetes, and its associated complications. To explore the active components of Hachimi-jio-gan, the antidiabetic effect of corni fructus, a consituent of Hachimi-jio-gan, and 7-O-galloyl-${{\small}D}$-sedoheptulose, a phenolic compound isolated from corni fructus, were investigated. Methods and Results: We conducted an extensive literature search, and all required data were collected and systematically organized. The findings were reviewed and categorized based on relevance to the topic. A summary of all the therapeutic effects were reported as figures and tables. Conclusions: Hachimi-jio-gan serves as a potential therapeutic agent to against the development of type 1 and type 2 diabetic nephropathy. From the results of characterization active components of corni fructus, 7-O-galloyl-${\small}D$-sedoheptulose is considered to play an important role in preventing and/or delaying the onset of diabetic renal damage. 7-O-Galloyl-${\small}D$-sedoheptulose is expected to serve as a novel therapeutic agent against the development of diabetic nephropathy.