• 제목/요약/키워드: Osteogenic potential

검색결과 92건 처리시간 0.022초

Neuromedin B modulates phosphate-induced vascular calcification

  • Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yeon;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.569-574
    • /
    • 2021
  • Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.

사람의 골수 줄기 세포로부터의 골세포 분화 과정에서 BMP-2가 미치는 영향과 그에 따른 분화 유전자의 발현 비교 연구 (THE EFFECT OF RHBMP-2 IN HUMAN BONE MARROW-DERIVED STEM CELLS AS OSTEOGENIC INDUCERS)

  • 김인숙;장옥련;조태형;이규백;박용두;노인섭;;황순정;김명진;이종호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제27권1호
    • /
    • pp.16-23
    • /
    • 2005
  • It is commonly acknowledged that bone morphogenic protein (BMP-2) functions as a potential osteogenic inducer in bone formation. Recently, several papers reported that bone marrow-derived stem cell (BMSC) from human is not responsive to BMP-2 in comparison to high capacity of BMP-2 in the osteoinduction of stromal cell derived from bone marrow of rodent animals such as rat or mouse. In this study, we characterized BMSC derived from 11 years old donor for the responsiveness to rhBMP-2, dexamethasone (Dex) and 1,25-dihydroxyvitamin D (vitamin D), in order to analyze their function in the early osteogenesis. The effect of over mentioned agents was evaluated by means of assessing alkaline phosphatase (ALP) activity/staining, RT-PCR analysis and von Kossa staining. In addition, we analyzed the meaning of expressed several osteoblastic markers such as alkaline phosphatase, collagen typeI, osteopontin, bone sialoprotein and osteocalcin with relation to either differentiation or mineralization. Only in the presence of Dex, human BMSC could commit osteoblastic differentiation and matrix mineralization, and either BMP-2 or vitamin D treatment was not able to induce. But BMP-2 or Vitamin D showed potential synergy effect with Dex. ALP and bone sialoprotein were clearly expressed in response of Dex treatment compared to weak expression of osteopontin in early osteogenesis. Therefore, we expect that this study will contribute partly to elucidiating early osteogenesis mechanism in human, but variations among bone marrow donors must be considered through further study.

자가기질혈관분획을 이용한 수지골 결손 환자의 치료 (Treatment of Phalangeal Bone Defect Using Autologous Stromal Vascular Fraction from Lipoaspirated Tissue)

  • 정태원;지이화;김덕우;동은상;윤을식
    • Archives of Plastic Surgery
    • /
    • 제38권4호
    • /
    • pp.438-444
    • /
    • 2011
  • Purpose: Adipose-derived stromal cells (ASCs) are readily harvested from lipoaspirated tissue or subcutaneous adipose tissue fragments. The stromal vascular fraction (SVF) is a heterogeneous set of cell populations that surround and support adipose tissue, which includes the stromal cells, ASCs, that have the ability to differentiate into cells of several lineages and contains cells from the microvasculature. The mechanisms that drive the ASCs into the osteoblast lineage are still not clear, but the process has been more extensively studied in bone marrow stromal cells. The purpose of this study was to investigate the osteogenic capacity of adipose derived SVF cells and evaluate bone formation following implantation of SVF cells into the bone defect of human phalanx. Methods: Case 1 a 43-year-old male was wounded while using a press machine. After first operation, segmental bone defects of the left 3rd and 4th middle phalanx occurred. At first we injected the SVF cells combined with demineralized bone matrix (DBM) to defected 4th middle phalangeal bone lesion. We used P (L/DL)LA [Poly (70L-lactide-co-30DL-lactide) Co Polymer P (L/DL)LA] as a scaffold. Next, we implanted the SVF cells combined with DBM to repair left 3rd middle phalangeal bone defect in sequence. Case 2 was a 25-year-old man with crushing hand injury. Three months after the previous surgery, we implanted the SVF cells combined with DBM to restore right 3rd middle phalangeal bone defect by syringe injection. Radiographic images were taken at follow-up hospital visits and evaluated radiographically by means of computerized analysis of digital images. Results: The phalangeal bone defect was treated with autologous SVF cells isolated and applied in a single operative procedure in combination with DBM. The SVF cells were supported in place with mechanical fixation with a resorbable macroporous sheets acting as a soft tissue barrier. The radiographic appearance of the defect revealed a restoration to average bone density and stable position of pharyngeal bone. Densitometric evaluations for digital X-ray revealed improved bone densities in two cases with pharyngeal bone defects, that is, 65.2% for 4th finger of the case 1, 60.5% for 3rd finger of the case 1 and 60.1% for the case 2. Conclusion: This study demonstrated that adipose derived stromal vascular fraction cells have osteogenic potential in two clinical case studies. Thus, these reports show that cells from the SVF cells have potential in many areas of clinical cell therapy and regenerative medicine, albeit a lot of work is yet to be done.

골절부위에 생긴 혈종의 골막하 이식이 골형성에 미치는 영향에 관한 실험적 연구 - 골스캔 소견을 중심으로 - (An Experimental Study on the Effect of Subperiosteal Transplantation of Fracture Site Hematoma: Focus on the Scintigraphic Detection)

  • 양승오;강흥식;장기현;이명철;구경회;성상철;박인애
    • 대한핵의학회지
    • /
    • 제24권1호
    • /
    • pp.124-132
    • /
    • 1990
  • It has been reported that hematoma is one of the most crucial factors in fracture healing since callus formation is disturbed by washing out the hematoma near a fracture site. However, it is not clear why the hamatoma is important and how it plays a role during the fracture healing. In order to investigate the role of hematoma in the process of fracture healing, the osteogenic potential by subperiosteal transplantation have been studied. Experimental fractures by operation were made at the mid-shaft of the tibia in New Zealand white rabbits. Removal of hematoma at the fracture site was done after 2 and 3 days from experimental fracture, and the removed hematoma was transplanted into the subperiosteal area at the mid-shaft of the ulna of each rabbit. As control groups, we have performed 3 different procedures 1) the hematoma was transplanted into the muscular layers at the thigh and forearm; 2) autologous blood clots were transplanted into the subperiosteal area of the ulna; and 3) sham operation without a transplantation into the subperiosteal area. After transplantation, serial bone scintigraphy and simple radiography were performed at 4 days, 1 week, and 2 weeks to detect an abnormality. The results of bone scintigraphy were positive in 5 of 6 experimental group. However, all in three control groups were negative. Histological observation of the positive bone revealed new bone formation with trabeculation. These results suggest the hematoma in fracture site has osteogenic potential in the subperiosteal area which can be demonstrable by bone scintigraphy and histologic findings. Therefore, it is considered that hematoma of the fracture site plays an important role in the process of fracture healing. Further biochemical investigation using various experimental models is mandatory to apply this preliminary result to the treatment of clinical delayed union or nonunion.

  • PDF

Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2

  • Jeon, Ryounghoon;Park, Sungjo;Lee, Sung-Lim;Rho, Gyu-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권3호
    • /
    • pp.515-524
    • /
    • 2020
  • Objective: Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods: Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results: Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion: Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.

홍화씨 분획 추출물이 치주인대 섬유아세포와 MC3T3-E1 세포에 미치는 영향 (The effect of safflower seed fraction extract on periodontal ligament fibroblast and MC3T3-E1 cell in vitro)

  • 허지선;강정화;유윤정;김창성;조규성;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제31권4호
    • /
    • pp.833-846
    • /
    • 2001
  • Recently, use of natural medicine is getting more attention, and some of them are believed to be effective in the treatment of periodontitis. Among them, the seeds of safflower(Carthamus tinctrorius L.) have been proven to be effective through its use in bone diseases such as fracture and osteoporosis. During the last few years, studies using the seeds of safflower gown in Korea have been active, and it has been reported that safflower seed extract increase the proliferation and the alkaline phosphatase(ALP) activity of human periodontal ligament fibroblast(hPDLF), osteoblast, and that they promote the mineralization process. In animal studies, when safflower seed extract were administered orally new bone formation was promoted. Recently, in an effort to find out the most effective osteogenic components, among many components of the safflower seed, various safflower seed fraction extracts were obtained by multistep extraction of the safflower components using various solvents. Among these, saf-M-W fraction extracted by methanol and water was most effective in increasing osteogenic potential of osteoblasts. In this study, the effect of safflower seed fraction extract, saf-M-W, on the growth and differentiation of hPDLF and MC3T3-E1 cell was investigated. The toxicity of saf-M-W on both cells was measured using M'IT(3-(4,5dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide) test, and ALP activity was measured using the colorimetric assay of hPDLF. In addition, in MC3T3-El cells, the expression of ALP, bone sialoprotein(BSP) mRNA was observed using Northern blot, and the mineralized nodule formation Was observed using von Kossa stain and phase-contrast microscope. 1. In concentrations below $10{\mu}g/ml$, saf-M-W didn't show any toxicity on hPDLF and MC3T3-El cell. 2. The change in saf-M-W concentration had no effect on the ALP activity of hPDLF. 3. In MC3T-E1 cells, mRNA expressions of ALP and BSP were greater in the experimental group treated with $10{\mu}g/ml$ concentration of saf-M-W compared with the control group. 4. In MC3T3-El cells, abundance of mineralized nodules were formed in the experimental group treated with $10{\mu}g/ml$ Concentration of saf-M-W, while no mineralized nodule was formed in the control group. These results suggest that safflower seed fraction extract, saf-M-W. didn't show any toxicity on hPDLF and MC3T3-E1 cell at concentrations below $10{\mu}g/ml$ and effectively enhanced the differentiation and osteogenic potential of MC3T3-El cell.

  • PDF

Effects of Cirsium setidens nakai on In Vitro Growth and Osteogenic Differentiation of Human Bone-Derived Mesenchymal Stem Cells

  • Kim, Hye-Been;Cheong, Kyu Min;Seo, Yu Ri;Lim, Ki-Taek
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.109-109
    • /
    • 2017
  • Cirsium setidens nakai belonging to cirsium has been reported to have various physiological activities including anticancer activity because it contains polyphenols, dietary fiber, minerals and vitamins. Despite these positive positive efficacies, however, no studies have studied cirsium setidens nakai products as biomaterials such as cellular metabolism and bone formation. Thus, the aim of this study was evaluate of osteogenesis differentiation a natural material extracted from cirsium setidens nakai. The natural materials in this studys in this studywere created by 40% ethanol extraction process and then dried. FabricatedFabricatedpowders were added to a medium at various concentrations (0.01, 0.05, 0.1, 0.2, and $0.25{\mu}g/mL$), and pure medium was used as a control. The natural material caused positive increases in cell metabolic activity and mineralized bone formation without cytotoxicity. In addition, we observed higher expression of genes such as ALP, BSP, Runx2 and COL1 in cirsium setidens nakai treatment cells. As a result, this study produced and investigated cirsium setidens nakai extracts and the natural materials showed potential biomaterials. In this research indicated that the cirsium setidens nakai extracts might have promising applications in areas of agricultural, biological and food engineering as a biomaterial.

  • PDF

인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인 (Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte)

  • 조혜경
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

Nectandrin A Enhances the BMP-Induced Osteoblastic Differentiation and Mineralization by Activation of p38 MAPK-Smad Signaling Pathway

  • Kim, Do Yeon;Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.447-453
    • /
    • 2013
  • Osteoblastic activity of nectandrin A was examined in C2C12 cells. Nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization, manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and increased calcium contents. In C2C12 cells co-transfected with expression vector encoding Smad4 and Id1-Luc reporter, nectandrin A increased Id1 luciferase activity in a concentration-dependent manner, when compared to that in BMP-2 treated cells, indicating that Smad signaling pathway is associated with nectandrin A-enhanced osteoblastic differentiation in C2C12 cells. In addition, nectandrin A activated p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and phosphorylated form of pSmad1/5/8 and alkaline phosphatase activity were both decreased when the cells were pretreated with SB203580, a p38 MAPK inhibitor, suggesting that p38 MAPK might be an upstream kinase for Smad signaling pathway. Taken together, nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization of C2C12 cells via activation of p38 MAPK-Smad signaling pathway, and it has a therapeutic potential for osteoporosis by promoting bone formation.

달팽이 추출물이 골 성장에 미치는 in Vitro 및 in Vivo 영향 (Effect of Snail Extract on Bone Growth in Vitro and in Vivo)

  • 손기호;김태희
    • 생약학회지
    • /
    • 제49권1호
    • /
    • pp.28-39
    • /
    • 2018
  • This study investigated the effect of snail extract on the growth parameters of old female rats (27 weeks). Rats were administered orally with snail extract at a dose of 100 mg/kg, 200 mg/kg, chondroitin sulfate 10 mg/kg and 0.9% saline (control) for 8 weeks. Bone mineral density (BMD) and serum concentrations of insulin-like growth factor 1 (IGF-1) and insulinlike growth factor-binding protein 3 (IGFBP-3) were significantly higher in rats exposed to snail extract for 8 weeks. MG-63 cells (human osteoblast-like cells) were treated with snail extract for 48 h. Their differentiation and proliferation was investigated with Western blot and morphological changes observed via immunofluorescence staining of ${\beta}-catenin$. Treatment with snail extract significantly increased the levels of growth factors including ${\beta}-catenin$ and IGF-1. The snail extract affected osteoblast formation. Morphological changes in MG-63 cells were observed via immunofluorescence staining. Treatment with snail extract increased the expression of ${\beta}-catenin$ in MG-63 cells. Results suggest that the treatment of MG-63 cells with snail extract increased the longitudinal growth and growth factor levels. Snail extract may be pharmacologically effective in osteogenic differentiation in vitro and represents a potential therapeutic agent for bone formation.