• 제목/요약/키워드: Osteoblast-like cells

검색결과 182건 처리시간 0.026초

치수, 치주인대 및 치낭에서 얻어진 성체줄기세포의 조골세포로의 분화능력 평가에 관한 연구 (A study on differentiation potency of adult stem cells from pulp, periodontal ligament, and dental follicle to osteoblast)

  • 이중규;이재훈
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제36권1호
    • /
    • pp.7-15
    • /
    • 2010
  • Complex human tissues harbor stem cells and precursor cells, which are responsible for tissue development or repair. Recently, dental tissues such as dental pulp, periodontal ligament (PDL), dental follicle have been identified as easily accessible sources of undifferentiated cells. These tissues contain mesenchymal stem cells that can be differentiate into bone, cartilage, fat or muscle by exposing them to specific growth conditions. In this study, the authors procured the stem cell from pulp, PDL, and dental follicle and differentiate them into osteoblast and examine the bone induction capacity. Dental pulp stem cell (DPSC), periodontal ligament stem cell (PDLSC), and dental follicle precursor cell (DFPC) were obtained from human 3rd molar and cultured. Each cell was analyzed for presence of stem cell by fluorescence activated cell sorter (FACs) against CD44, CD105 and CD34, CD45. Each stem cell was cultured, expanded and grown in an osteogenic culture medium to allow formation of a layer of extracellular bone matrix. Osteogenic pathway was checked by alizarin red staining, alkaline phosphatase (ALP) activity test and RT-PCR for ALP and osteocalcin (OCN) gene expression. According to results from FACs, mesenchymal stem cell existed in pulp, PDL, and dental follicle. As culturing with bone differentiation medium, stem cells were differentiated to osteoblast like cell. Compare with stem cell from pulp, PDL and dental follicle-originated stem cell has more osteogenic effect and it was assumed that the character of donor cell was able to affect on differential potency of stem cell. From this article, we are able to verify the pulp, PDL, and dental follicle from extracted tooth, and these can be a source of osteoblast and stem cell for tissue engineering.

마그네슘 티타네이트 표면의 조골세포 부착도와 분화 (Osteoblast adhesion and differentiation on magnesium titanate surface)

  • 최승민;이재관;고성희;엄흥식;장범석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권4호
    • /
    • pp.851-861
    • /
    • 2005
  • The nature of the implant surface can directly influence cellular response, ultimately affecting the rate and quality of new bone tissue formation. The aim of this in vitro study was to investigate if human osteoblast-like cells, Saos-2, would respond differently when plated on disks of magnesium titanate and machined titanium. Magnesium titanate disks were prepared using Micro Arc Oxidation(MAO) methods. Control samples were machined commercially pure titanium disks. The cell adhesion, proliferation and differentiation were evaluated by measuring cell number, and alkaline phosphatase(ALPase) activity at 1 day and 6 day after plating on the titanium disks. Measurement of cell number and ALPase activity in Saos-2 cells at 1 day did not demonstrate any difference between machined titanium and magnesium titanate. When compared to machined titanium disks, the number of cells was reduced on the magnesium titanate disks at 6 day, while ALPase activity was more pronounced on the magnesium titanate. Enhanced differentiation of cells grown on magnesium titanate samples was indicated by decreased cell proliferation and increased ALPase activity.

Expression of taurine transporter and taurine uptake in mouse osteoblast cell lines

  • Naomi Ishido;Nakashima, Emi Nakashima;Kang, Yonug-Sook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.124.2-124.2
    • /
    • 2003
  • Taurine is present in a variety of tissue and exhibits many important physiological functions in the cell. Although it is known that many tissues mediate taurine transport, its functions of taurine transport in bone have not been identified yet. In the present study, we investigated the expression of taurine transporter (TauT) and taurine uptake using mouse stromal ST2 cells and osteoblast-like MC3T3-E1 cells, which is bone related cells. Detection of TauT MRNA expression in these cells were performed by reverse transcription polymerase chain reaction (RT-PCR). (omitted)

  • PDF

치주인대세포(齒周靭帶細胞)의 생화학적(生化學的) 특이성(特異性)에 대(對)한 연구(硏究) (BIOCHEMICAL CHARACTERISTICS OF HUMAN PERIODONTAL LIGAMENT CELLS IN VITRO)

  • 조성욱;차경석
    • 대한치과교정학회지
    • /
    • 제22권1호
    • /
    • pp.273-283
    • /
    • 1992
  • To find out the differences between periodontal ligament cells (PDL cells) and gingival fibroblast cells (GFB cells), alkaline phosphatase, a marker enzyme for osteoblast, was used to measure the activities and $^{45}CaCl_2$ isotope was used to find out cellular and release of $^{45}Ca$, a requisite for bone formation,. PDL cells and GFB cells from 1 to 5 passages were also measured in alkaline phosphatase activity assay. By the use of above methods, followings were concluded that the PDL cells and the GFB cells have characteristics that are different from each other. In that PDL cells showed large amount of calcium uptake and large amount of calcium release in initial stage, they seem to possess characteristics which are similar to osteoblast-like cells. 1. The PDL cells, in contrast to the gingival fibroblast, showed exceedingly high alkaline phosphatase activity which was highest at the second passage, decreasing thereon. But gingival fibroblasts cells showed no distinct differences in alkaline phosphatase activity as the passage were elapsed. 2. For both PDL cells and GF cells, the $^{45}Ca$ uptake was greatest at 2 hours period. The PDL cells showed higher measuring than GFB cells through out the whole time period. 3. Whereas the GFB cells showed slow increase of $^{45}Ca$ release as time relapsed, the PDL cells showed rapid increase of $^{45}Ca$ release.

  • PDF

Effect of Titanium Coating on Cell Adhesion and Extracellular Matrix Formation in Human Osteoblast-like MG-63 Cells

  • Lee, Jae-Bum;Seo, Sang-Hui;Kim, Yu-Ri;Shin, Sang-Wan;Kim, Meyoung-Kon;Ryu, Jae-Jun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.192-198
    • /
    • 2008
  • A variety of titanium (Ti) and its alloys are used in the clinical procedures of bone regeneration for periodontal and dental implant therapies. This study was performed to determine the effect of different surface dental implant materials on biologic responses of a MG-63 human osteoblast-like cell line. MG-63 cells were cultured on Ti coated with hydroxyapatite (HA), calcium metaphosphate (CMP), anodized (A), which compared with non-coated Ti (control). The appearances of surface of dental implant materials and the morphology of these cells were assessed by scanning electron microscopy (SEM). The gene expression profiles of MG-63 cells cultured on Ti were examined by human cDNA microarray (1,152 elements). The expression of several genes was up- and down-regulated by different surfaces of dental implant materials. Interesting, the genes correlated with cellular adhesion and extra cellular matrix (ECM) formation were enhanced, in accordance surface morphology of the dental implant materials used.

식물성 에스트로겐이 MC3T3-El 골아세포의 성장과 Insulin-like Growth Factor-1(IGF-1)생성에 미치는 영향 (Effects of Phytoestrogen on Cell Growth and Insulin-like Growth Factor-I (IGF-I) Production in MC3T3-El Cells)

  • 권지영;남택정
    • 한국식품영양과학회지
    • /
    • 제34권6호
    • /
    • pp.743-749
    • /
    • 2005
  • 식물성 에스트로겐은 에스트로겐의 대체물질로서 골 형성을 촉진하며, 다른 부작용 없이 폐경기 이후 여성의 골다공증 예방에 효과적인 물질로 주목받고 있다. 본 연구에서는 식물성 에스트로겐의 골 형성과 관련된 생리학적 기능을 확인하고자 식물성 에스트로겐인 genistein, daidzein 및 resveratrol을 각각 $10^{-5}$ M 농도로 세포배양액 에 첨가하여 MC3T3-El 골아세포의 증식과 성장에 미치는 효과를 검토 하였다 그 결과 이들은 에스트로겐인 $17\beta$-estradiol과 마찬가지로 MC3T3-El 골아세포의 증식과 성장을 향상시켰으며, daidzein과 resveratrol의 효과는 genistein의 효과보다 큰 것으로 나타났다 골 형성 정도를 판단하는 생화학적 지표로 활용되고 골아세포의 증식과도 밀접한 관계를 가지는 alkaline phosphatase(ALP) 활성 또한 genistein, daidzein 및 resveratrol에 의해 증가하였다. 에스트로겐은 세포성장인자인 IGF-I의 국소적 생산과 분비를 촉진하며 간접적으로 골 대사 촉진 효과를 유도해낼 수 있다고 보고되어 있었지만 식물성 에스트로겐의 투여에 의해 IGF-I의 농도가 증가하였다는 보고는 없었다. 그러나 본 실험 결과, 식물성 에스트로겐인 genistein, daidzein 및 resveratrol은 IGF-I의 단백질과 mRNA 수준을 증가시키는 것으로 나타났다. 이상의 연구결과들은 식물성 에스트로겐의 골 형성 촉진 효과를 증명하는 것으로서 이들의 유용한 약리학적 기능을 뒷받침하는 하나의 근거로 활용될 수 있으리라 사료된다.

MC3T3-E1 세포주에서 황기.계지.황백 처방(BHH10)의 골형성 촉진 효능 연구 (Effects of Astragalus Membranaceus, Innamomum Cassia, Phellodendron Amurensis(BHH10) on MC3T3-E1 Cells Proliferation, Differntiation and Bone Mineralized Formation)

  • 이미림;허정은;남동우;선종인;강중원;김성훈;최도영;이재동
    • Journal of Acupuncture Research
    • /
    • 제29권6호
    • /
    • pp.11-21
    • /
    • 2012
  • Objectives : BHH10 is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify BHH10 extract induces osteogenic activity in human osteoblast-like MC3T3-E1 cells. Methods : MC3T3-E1, pre-osteoblast cell line, were treated with BHH10 of various concentrations($0.1{\mu}g/mL$, $1{\mu}g/mL$, $10{\mu}g/mL$). And then, the effect of BHH10 on osteoblast differentiation was examined by alkaline phosphatase(ALP) activity, von Kossa staining and RT-PCR for osteoblast differentiation markers such as osteocalcin(OCN), osteopontin(OPN). Results : BHH10 had dose-dependent effect on the viability of osteoblastic cells, and dose-dependently increased alkaline phosphatase(ALP) activity. BHH10 markedly increased mRNA expression for OCN, OPN in MC3T3-E1 cells. Also, BHH10 significantly induced mineralization in the culture of MC3T3-E1 cells. Conclusions : In conclusion, these results propose that BHH10 can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

Fabrication and Characterization of BCP Nano Particle Loaded PCL Fiber and Their Biocompatibility

  • Nguyen, Thi-Phuong;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.392-400
    • /
    • 2010
  • The electrospinning process was established as a promising method to fabricate nano and micro-textured scaffolds for tissue engineering applications. A BCP-loaded PCL micro-textured scaffold thus can be a viable option. The biocompatibility as well as the mechanical properties of such scaffold materials should be optimized for this purpose. In this study, a composite scaffold of poly ($\varepsilon$-caprolactone) (PCL)-biphase calcium phosphate (BCP) was successfully fabricated by electrospinning. EDS and XRD data show successful loading of BCP nano particles in the PCL fibers. Morphological characterization of fibers shows that with a higher loaded BCP content the fiber surface was rougher and the diameter was approximately 1 to 7 ${\mu}m$. Tensile modulus and ultimate tensile stress reached their highest values in the PCL- 10 wt% BCP composite. When content of nano ceramic particles was low, they were dispersed in the fibers as reinforcements for the polymer matrix. However, at a high content of ceramic particles, the particles tend to agglomerate and lead to decreasing tensile modulus and ultimate stress of the PCL-BCP composite mats. Therefore, the use of nano BCP content for distribution in fiber polymer using BCP for reinforcement is limited. Tensile strain decreased with increasing content of BCP loading. From in vitro study using MG-63 osteoblast cells and L-929 fibroblast like cells, it was confirmed that electrospun PCL-BCP composite mats were biocompatible and that spreading behavior was good. As BCP content increased, the area of cell spreading on the surface of the mats also increased. Cells showed the best adherence on the surface of composite mats at 50 wt% BCP for both L-929 fibroblast-like cells and MG-63 osteoblast cell. PCL- BCP composites are a promising material for application in bone scaffolds.