• 제목/요약/키워드: Osteoblast Dental implant

검색결과 54건 처리시간 0.025초

임플랜트에 연결한 영구자석이 임플랜트 주위 뼈모세포의 분포와 부착에 미치는 영향에 관한 연구 (THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON DISTRIBUTION AND ATTACHMENT OF OSTEOBLAST-LIKE CELL AROUND THE DENTAL IMPLANT)

  • 오나희;최부병;권긍록;백진;이성복
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.511-518
    • /
    • 2005
  • Purpose: The purpose of this study is to find the effect of rare earth magnet's magnetic field of to the osteoblast around the implant by the means of observation number, and distribution around the implant which is connected to the permanent magnet but not, counted and compared by the number of cells attached to the surface of the implant. Material and method: The permanent magnets, made in the healing cap form, were connected to the implant future, and placed on the culture plate, The osteoblast-like cell: MC3T3-E1 were used for cell culture. As the control group, the implant were connected to normal healing cap, and cultured in the same conditions. 48 hours later, using inverted microscope, the number and distribution of osteoblast around the implant were observed, and 72 hours later, the number of the cells attached to the implant were counted. Results: As a result, the implant connected to the permanent magnet had proved to have a more concentrated cell distribution rate than the control group. The implant connected to the permanent magnet, neck area : which has about 10 gauss magnetic force, had more cells than apex area. The implant connected to the permanent magnet had proven to attach to the osteoblast more productively than control group's implant. Conclusions: This research showed that the magnetic field of the permanent magnet affected the distribution and growth rate of the osteoblast around the implant. In order to support this study, it also had need to monitor the progress of the permanent magnet specifically shown on the neck area, which has10 gauss magnetic force. So after additional research on the distribution and attachment of the cells, and further more, on bone formation, it will be concluded that the clinical applications ,such as immediate loading of implant treatment are possible.

Effect of Titanium Coating on Cell Adhesion and Extracellular Matrix Formation in Human Osteoblast-like MG-63 Cells

  • Lee, Jae-Bum;Seo, Sang-Hui;Kim, Yu-Ri;Shin, Sang-Wan;Kim, Meyoung-Kon;Ryu, Jae-Jun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.192-198
    • /
    • 2008
  • A variety of titanium (Ti) and its alloys are used in the clinical procedures of bone regeneration for periodontal and dental implant therapies. This study was performed to determine the effect of different surface dental implant materials on biologic responses of a MG-63 human osteoblast-like cell line. MG-63 cells were cultured on Ti coated with hydroxyapatite (HA), calcium metaphosphate (CMP), anodized (A), which compared with non-coated Ti (control). The appearances of surface of dental implant materials and the morphology of these cells were assessed by scanning electron microscopy (SEM). The gene expression profiles of MG-63 cells cultured on Ti were examined by human cDNA microarray (1,152 elements). The expression of several genes was up- and down-regulated by different surfaces of dental implant materials. Interesting, the genes correlated with cellular adhesion and extra cellular matrix (ECM) formation were enhanced, in accordance surface morphology of the dental implant materials used.

치과 임플란트에서의 분자생물학적 연구 (MOLECULAR BIOLOGY IN DENTAL IMPLANT)

  • 지유진;류동목;이덕원
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.616-621
    • /
    • 2008
  • Osseointegration is a result of bone formation and bone regeneration processes, which takes place at the interface between bone and implant, and it indicates a rigid fixation that can be stably maintained while functional loading is applied inside the oral cavity as well as after implant placement. Although many researches were carried out about osseointegration mechanism, but cellular and molecular events have not been clarified. With recent development of molecular biology, some researches have examined biological determinants, such as cytokine, growth factors, bone matrix proteins, during osseointegration between bone and implant surface, other researches attempted to study the ways to increase bone formation by adhering protein to implant surface or by inserting growth factors during implant placement. Cellular research on the reaction of osteoblast especially to surface morphology (e.g. increased roughness) has been carried out and found that the surface roughness of titanium implant affects the growth of osteoblast, cytokine formation and mineralization. While molecular biological research in dental implant is burgeoning. Yet, its results are insignificant. We have been studying the roles of growth factors during osseointegration, comparing different manifestations of growth factors by studying the effect of osseointegration that varied by implant surface. Of many growth factors, $TGF-{\beta}$, IGF-I, BMP2, and BMP4, which plays a significant role in bone formation, were selected, and examined if these growth factors are manifested during osseointegration. The purpose of this article is to present result of our researches and encourage molecular researches in dental implant.

치과용 임플란트 주위 뼈모세포에 대한 전기자극의 영향에 관한 연구 (The Effect of Electrical Stimulation on Osteoblast Surrounding Dental Implant)

  • 우경엽;권긍록;최부병
    • 구강회복응용과학지
    • /
    • 제19권3호
    • /
    • pp.195-206
    • /
    • 2003
  • Several factors can affect the formation of bone tissues surrounding implants. One of the factors is electrical stimulation. It is known to change the movement of cells, form and destroy cells, and alter concentration and chemical component of soft tissues and bones. The effect of electrical stimulation on bone formation can vary according to the intensity of electric currents, stimulating time, the method of sending electric currents, and tissues and cells currents are applied to. This study examines how various enviroments affect osteoblasts. (1) effect on osteoblast with varying intensity of currents Osteoblast-like cells were raised on four plates where implants can be placed. A constant current sink (MC3T3-E1) that can adjust the intensity and stimulating time of electric currents was used. The four plates were stimulated with $0{\mu}A$, $10{\mu}A$, $20{\mu}A$, and $40{\mu}A$, respectively. After 24 hours of stimulation, the number and distribution of cells surrounding implants were examined. (2) effect on osteoblast with varying conditions The 3 study was performed with same method. (1) The change of attached cell number 72-hour after application of various currents (2) The change of attached cell number 72-hour after application of various interval (3) The comparison of attached cell number by implant surface texture The following are the results: 1. The distribution and density of cells surrounding implant is highest under the intensity of electric currents of $20{\mu}A$. 2. The number of cells attached implants is highest under the intensity of electric currents of $20{\mu}A$. 3. The number of cells attached implants is highest under continous electric currents 4. The number of cells attached implants is not different by implant surface texture.

치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화 (Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test)

  • 박정현;강신영;김종우;김장주;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

임플랜트에 연결한 영구자석의 자력이 뼈의 세포외 기질 생성에 미치는 영향에 관한 실험실적 연구 (THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON BONE EXTRACELLULAR MATRIX FORMATION)

  • 원인재;백진;권긍록;이성복
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.574-583
    • /
    • 2006
  • Statement of problem : The use of permanent magnetics is increasing in implant dentistry. Purpose : This study is to know the effect of permanent magnetics on bone matrix formation of osteoblasts. Materials and methods : The konus abutment-shaped permanent magnetics were connected to the implant fixture, and placed on the culture plate. The osteoblast-like cell Mc3T3E1 were used for cell culture. As the control group, the implants were connected to titanium healing caps, and cultured in the same conditions of experimental group. After 3. 7, 14 days, cells were cultured, and we measured and compared the amount of collagen type I, osteocalcin, which is bone matrix protein by Western immunoblotting analysis. Results: As a result of Western immunoblotting analysis for estimating the amount of bone extracellular matrix, there was no difference between osteoblast of the experimental group and the control group during 3 and 7day-osteoblast culturing. However when cells were cultured for 14days, the amount of bone extracellular matrix was increased, on the experimental group. Conclusion: From these results, magnetic field of permanent magnetics might have effect on bone formation of osteoblast, especially at initial stage of implant placement. Therefore, their clinical application for implant or bone graft could be possible.

Improvement of biohistological response of facial implant materials by tantalum surface treatment

  • Bakri, Mohammed Mousa;Lee, Sung Ho;Lee, Jong Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제41권
    • /
    • pp.52.1-52.8
    • /
    • 2019
  • Background: A compact passive oxide layer can grow on tantalum (Ta). It has been reported that this oxide layer can facilitate bone ingrowth in vivo though the development of bone-like apatite, which promotes hard and soft tissue adhesion. Thus, Ta surface treatment on facial implant materials may improve the tissue response, which could result in less fibrotic encapsulation and make the implant more stable on the bone surface. The purposes of this study were to verify whether surface treatment of facial implant materials using Ta can improve the biohistobiological response and to determine the possibility of potential clinical applications. Methods: Two different and commonly used implant materials, silicone and expanded polytetrafluoroethylene (ePTFE), were treated via Ta ion implantation using a Ta sputtering gun. Ta-treated samples were compared with untreated samples using in vitro and in vivo evaluations. Osteoblast (MG-63) and fibroblast (NIH3T3) cell viability with the Ta-treated implant material was assessed, and the tissue response was observed by placing the implants over the rat calvarium (n = 48) for two different lengths of time. Foreign body and inflammatory reactions were observed, and soft tissue thickness between the calvarium and the implant as well as the bone response was measured. Results: The treatment of facial implant materials using Ta showed a tendency toward increased fibroblast and osteoblast viability, although this result was not statistically significant. During the in vivo study, both Ta-treated and untreated implants showed similar foreign body reactions. However, the Ta-treated implant materials (silicone and ePTFE) showed a tendency toward better histological features: lower soft tissue thickness between the implant and the underlying calvarium as well as an increase in new bone activity. Conclusion: Ta surface treatment using ion implantation on silicone and ePTFE facial implant materials showed the possibility of reducing soft tissue intervention between the calvarium and the implant to make the implant more stable on the bone surface. Although no statistically significant improvement was observed, Ta treatment revealed a tendency toward an improved biohistological response of silicone and ePTFE facial implants. Conclusively, tantalum treatment is beneficial and has the potential for clinical applications.

Analysis of osteogenic potential on 3mol% yttria-stabilized tetragonal zirconia polycrystals and two different niobium oxide containing zirconia ceramics

  • Hein, Aung Thu;Cho, Young-Dan;Jo, Ye-Hyeon;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.147-154
    • /
    • 2018
  • PURPOSE. This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS. 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness ($R_a$) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS. The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION. Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.

The biological effects of fibrin-binding synthetic oligopeptides derived from fibronectin on osteoblast-like cells

  • Kim, Yun-Jeong;Park, Yoon-Jeong;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • 제42권4호
    • /
    • pp.113-118
    • /
    • 2012
  • Purpose: The aim of this study was to investigate the effects of synthetic fibronectin (FN) fragments, including fibrin binding sites from amino-terminal FN fragments containing type I repeats 1 to 5, on osteoblast-like cell activity. Methods: Oligopeptides ranging from 9 to 20 amino acids, designated FF1, FF3, and FF5, were synthesized by a solid-phase peptide synthesizing system, and we investigated the effects of these peptides on cell attachment and extent of mineralization using confocal microscopy, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and Alizarin red S staining. Results: FF3 and FF5 peptides increased the number of attached human osteoblastic cells, and FF3 administration led to prominent cell spreading. Mineralization was increased in FF3 and FF5 compared to FF1 and the untreated control. Conclusions: Taken together, it can be concluded that the fibrin-binding oligopeptides FF3 and FF5 enhanced cell attachment and mineralization on osteoblast-like cells. These results indicate that FF3 and FF5 have the potential to increase osteoblast-like cell activity. Performing an in vivo study may provide further possibilities for surface modification of biomimetic peptides to enhance osteogenesis, thus improving the regeneration of destroyed alveolar bone.

Bioactive characteristics of an implant surface coated with a pH buffering agent: an in vitro study

  • Pae, Hyung-Chul;Kim, Su-Kyoung;Park, Jin-Young;Song, Young Woo;Cha, Jae-Kook;Paik, Jeong-Won;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • 제49권6호
    • /
    • pp.366-381
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the effectiveness of conventional sandblasted, large-grit, acid-etched (SLA) surface coated with a pH buffering solution based on surface wettability, blood protein adhesion, osteoblast affinity, and platelet adhesion and activation. Methods: Titanium discs and implants with conventional SLA surface (SA), SLA surface in an aqueous calcium chloride solution (CA), and SLA surface with a pH buffering agent (SOI) were prepared. The wetting velocity was measured by the number of threads wetted by blood over an interval of time. Serum albumin adsorption was tested using the bicinchoninic acid assay and by measuring fluorescence intensity. Osteoblast activity assays (osteoblast adhesion, proliferation, differentiation, mineralization, and migration) were also performed, and platelet adhesion and activation assays were conducted. Results: In both the wetting velocity test and the serum albumin adsorption assay, the SOI surface displayed a significantly higher wetting velocity than the SA surface (P=0.000 and P=0.000, respectively). In the osteoblast adhesion, proliferation, differentiation, and mineralization tests, the mean values for SOI were all higher than those for SA and CA. On the osteoblast migration, platelet adhesion, and activation tests, SOI also showed significantly higher values than SA (P=0.040, P=0.000, and P=0.000, respectively). Conclusions: SOI exhibited higher hydrophilicity and affinity for proteins, cells, and platelets than SA. Within the limits of this study, it may be concluded that coating an implant with a pH buffering agent can induce the attachment of platelets, proteins, and cells to the implant surface. Further studies should be conducted to directly compare SOI with other conventional surfaces with regard to its safety and effectiveness in clinical settings.