• Title/Summary/Keyword: Osteoblast

Search Result 711, Processing Time 0.027 seconds

Effects of Kanghwalsokdan-tang Gamibang Water Extract on Osteoclast Differentiation and Osteoblast Proliferation (강활속단탕가미방(羌活續斷湯加味方)이 파골세포 분화 및 조골세포 활성에 미치는 영향)

  • Jung, Eun-Hye;Yoo, Dong-Youl
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.29 no.2
    • /
    • pp.66-82
    • /
    • 2016
  • Objectives : This study was conducted to evaluate the effect of Kanghwalsokdan-tang Gamibang water extract (KSG) on osteoporosis. Methods : RANKL-stimulated RAW 264.7 was used to evaluate inhibitory effect of KSG osteoclast differentiation and gene expression. We counted TRAP (+) multinucleated cells and measured TRAP activity and mRNA expressions of osteoclastogenesis-related genes (NFATc1, MITF, JNK1, cathepsin K, MMP-9) to figure out the effect of KSG on osteoclast. Osteoblastogenesis was also determined in rat calvarial cell. Alkaline phosphatase (ALP) activity, bone matrix protein and collagen synthesis were measured by using murine calvarial cell. Results : KSG inhibited the differentiation of osteoclast precursor cell and expression of genes related osteoclastogenesis like NAFTc1, MITF, c-fos, JNK1, Cathepsin K, MMP-9 and TRAP. KSG increased cell division and function of osteoblast separated from the skull of a rat and ALP synthesis, biosynthesis of bone matrix protein and collagen. Conclusions : Reviewing these results, KSG has efficacy on osteoclast inhibition and osteoblast activation. After further study, KSG will be able to apply for osteoporosis treatment and prevention.

Inhibitory Effects on Bone Resorption and osteoblast proliferation of Kyungok-go (경옥고와 경옥고가연자육의 조골세포 증식과 골흡수 억제효과)

  • Kim, Ju-Ho;Lee, Jung-Ho;Oh, Jae-Min;Kim, Yun-Kyung
    • Herbal Formula Science
    • /
    • v.19 no.2
    • /
    • pp.61-71
    • /
    • 2011
  • Objectives : Kyungok-go(KOG), the first herbal formulation of donguibogam, has been used for treating of many symptoms of yin deficiency. In this study, we examined the effect of KOG on bone resorption. Methods : We determined the effects of water extract of KOG in RANKL(Receptor Activator for Nuclear Factor ${\kappa}B$ Ligand)-induced osteoclast differentiation culture system and osteoblast proliferation. In addition, we determined the effects of water extract of ABR on LPS-induced bone-loss with mice. Results : Water extract of KOG showed proliferation effect on osteoblast without cytotoxicity and no effect on RANKL-treated osteoclast differentiation. KOG rescued bone erosion by LPS induction in vivo study. Conclusions : These results demonstrated that KOG can be a useful remedy for treating of bone-loss disease such as osteoporosis.

High concentration of calcium represses osteoblast differentiation in C2C12 cells

  • Lee, Ye Jin;Han, Younho
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.162-168
    • /
    • 2020
  • Calcium is the most abundant stored mineral in the human body and is especially vital for bone health; thus, calcium deficiency can cause bone-related diseases, such as osteopenia and osteoporosis. However, a high concentration of serum calcium, which is commonly known as hypercalcemia, can also lead to weakened bones and, in severe cases, osteosarcoma. Therefore, it is necessary to maintain the concentration of calcium that is appropriate for bone biology. In the present study, we aimed to elucidate the effects of high concentration of calcium, approximately 2 folds the normal calcium level, on osteoblast differentiation. The CaCl2 treatment showed dose-dependent suppression of the alkaline phosphatase activity and mineralized nodule formation. Calcium showed cytotoxicity at an extremely high concentration, but a moderately high concentration of calcium that results in inhibitory effects to osteoblast differentiation showed no signs of cytotoxicity. We also confirmed that the CaCl2 treatment repressed the mRNA expression and protein abundance of various osteogenic genes and transcriptional factors. Considered together, these results indicate that a high concentration of calcium negatively regulates the osteoblast differentiation of C2C12 cells.

The Effect of Low Intensity Ultrasound on Osteoblast Activation (저강도 초음파가 조골세포 활성에 미치는 영향)

  • 홍성민;한승무;한은옥;임사비나;김창주
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.201-206
    • /
    • 2004
  • The bone formation and re-formation are regulated by two factors that are the synthesis of bone matrix by osteoblast and reabsorption by osteoclast. Recently, there are many studies about regeneration and healing of bone tissue by activation of osteoblast. In general, it is known that the activation of osteoblast is influenced by not only biological stimulus but physical stimulus. In this study, we verified that ostoeblast activation was influenced by low intensity ultrasound. Various ultrasonic properties were used to find out the most appropriate condition on cell activation. From this study, we could confirm that 0.3W/$\textrm{cm}^2$ intensity of ultrasound was the most appropriate to tell activation over whole duty cycles and the increasing rate of tell was the highest at 50% duty cycle. Thus, it is expected that optimal ultrasonic characteristics on regeneration of bone matrix may be applied to fracture and osteoporosis healing.

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

Effect of Extracts from Safflower Seeds on Osteoblastic Differentiation and Intracellular Free Calcium Concentration in MC3T3-El Cells

  • Jang, Hye-Ock;Eom, Hyun-Sup;Roh, Sung-Bae;Yun, ll
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.55-62
    • /
    • 2005
  • Very little research has been carried out on safflower seed for the prevention and treatment of the bone deficiency diseases, including osteoporosis, which are supported by scientific evidences. In the present study, $3{\mu}l$ of 0.1% dried crude extract or $2{\mu}l$ of 0.1% dried aqueous fraction were shown to significantly accelerate the rate of differentiation of osteoblast. Also, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells: $3{\mu}l$ of 0.1% dried crude extract and $2{\mu}l$ of 0.1% dried aqueous fraction significantly increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells ($8{\times}10^{-4}$) to the extent that it deserves a considerable attention. Furthermore, the crude extract and aqueous fraction increased the $[Ca^{2+}]_i$ of the cultured osteoblast cells, and $300{\mu}M$ $Cd^{2+}$, specific calcium channel blocker, completely blocked the increase. Therefore, the increased $[Ca^{2+}]_i$ of the cultured osteoblast cells by safflower seed component continued to activate calcium channel.

N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway

  • Lee, Daewoo;Kook, Sung-Ho;Ji, Hyeok;Lee, Seung-Ah;Choi, Ki-Choon;Lee, Kyung-Yeol;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.48 no.11
    • /
    • pp.636-641
    • /
    • 2015
  • There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC.

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

Effects of Uncaria rhynchophylla Extracts on Differentiation and Bone Mineralized Formation in Human Osteoblast-like SaOS-2 cells

  • Huh, Jeong-Eun;Baek, Yong-Hyeon;Choi, Do-Young;Lee, Jae-Dong;Park, Dong-Suk
    • The Journal of Korean Medicine
    • /
    • v.28 no.4
    • /
    • pp.158-167
    • /
    • 2007
  • Background & Objective : Uncaria rhynchophylla is traditional medicine herb used for enhancing body resistance against various diseases. The aim of this study was to identify if Uncaria rhynchophylla extracts induce osteogenic activity in human osteoblast-like SaOS-2 cells. Methods : The osteogenic activity of Uncaria rhynchophylla was evaluated on cell proliferation assay by WST-8, and osteoblast-specific genes, such as VEGF, type I collagen (Col I), osteocalcin (OCN), and osteopontin (OPN) by RT-PCR analysis and ELISA assay in osteoblasts-like SaOS-2 cells. Bone mineralization was stained with Alizalin red method. Results : Uncaria rhynchophylla had significantly increased cell proliferation at a dose dependent manner in human osteoblast-like SaOS-2 cells. Uncaria rhynchophylla markedly increased alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF) mRNA expression at 7 days and dose dependently increased ALP activity and VEGF secretion in human osteoblast-like SaOS-2 cells. Also, Uncaria rhynchophylla time-dependently increased type I collagen (Col I), osteopontin (OPN), and osteocalcin (OCN) mRNA in SaOS-2 cells. Extracellular accumulation of proteins such as Col I and OCN was maximal increased by Uncaria rhynchophylla at 10 ${\mu}g/ml$. Also, Uncaria rhynchophylla significantly induced mineralization in the culture of SaOS-2 cells. Conclusion : This study showed that Uncaria rhynchophylla had enhanced proliferation, ALP activity, VEGF, bone matrix proteins such as OCN, OPN, and Col I, and mineralization in SaOS-2 cells. These results propose that Uncaria rhynchophylla can play an important role in osteoblastic bone formation, osteogenesis, and may possibly lead to the development of bone-forming drugs.

  • PDF

Effects of Kangwhal-Sokdantang Extract on Osteoblast Function (강활속단탕(羌活續斷湯)이 골세포(骨細胞) 기능(機能)에 미치는 영향(影響))

  • Lee Taek-Jun;Hong Ji-Woo;Choi Hyun-Ju;Gil In-Ho;Jeong Sun-Chung;Hwang Gui-Seo;Lee Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.8 no.2
    • /
    • pp.13-30
    • /
    • 2004
  • This study was performed to evaluate the effect of Kangwhal-Sokdan tang(KS) on osteoblast function and gene expression. The osteoblast separated from the murine calvariae and MG-63 cell were cultivated to evaluate the cell function and gene expression. The results were summarized as followes. 1) KS increased cell proliferation of murine calvarial cell. 2) KS increased protein synthesis, collagen synthesis and ALP activity of murine calvarial cell. 3) KS increased the survival rate of murine calvarial cell. 4) KS increased the expression of calcitonin receptor and PTH receptor. 5) KS increased the expression of PKA and PKC. 6) KS decreased the expression of $PLA_2$, COX, $PGE_2$ synthase, but increased prostacyclin synthase. 7) KS increased the expression of collagen(type IV) gene. It is concluded that KS might improve the osteoporosis resulted from augumentation of osteoblast proliferation and gene expression.

  • PDF