• Title/Summary/Keyword: Osmotic change

Search Result 83, Processing Time 0.028 seconds

Studies for the osmotic parameter of liposomes

  • Yu, Byung-Sul;Seo, Weon-Gyo;Jeon, Young-Ho
    • Archives of Pharmacal Research
    • /
    • v.10 no.2
    • /
    • pp.94-99
    • /
    • 1987
  • By using the former equation (8), we modified the equation which can show the dissimilar osmotic behavior of liposome with composition change. The slope of the new equation was presented as the ratio of osmotically active volume (V$_{act}$= ) to the total volume (V$_{totel}$= $_{acl}$+ V$_{dead}$ ; V$_{dead}$ is osmotically inactive volume) of loposomes, we defined is as a Z-value, which can elucidate the dissimilarity of the osmotic activity of multilamellar liposomes with the change of phospholipid composition and the differences of physicochemical properties of liposomes. Z-value was applied for studying the physico-chemical properties of liposomal membrane. The factor that affects on the Z-value was not the lipid concentration of liposome stock dispersion but the lipid composition of liposomal membrane. As the content of dicetylphosphate, the negative charged phospholipid, was increased, the osmotic activity, represented by Z-value, of multilamellar liposome was decreased. Using the hypertonic conditions (shrinking region), Z-value steadily increased and reached a maximum at 10 mole percent cholesterol with increasing the cholesterol content.

  • PDF

Relationship between Water Content and Osmotic Potential of Lentinula edodes

  • Koo, Chang-Duck;Cho, Sun-Young
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.24-27
    • /
    • 2008
  • This study was conducted to understand how osmotic potentials in Lentinula edodes tissues are related to water contents and how they change while a mushroom matures. Water content and osmotic potential of L. edodes mushroom tissues from log cultivation and sawdust cultivation were measured and the relationships were analyzed. Osmotic potentials in the tissues were exponentially proportional to their moisture contents and there were strain differences in the potentials. Strain 290 has lower osmotic potential than strain 302, in the tissues at the same water content. As the mushrooms mature, tissue water content maintained ca 94% in head tissues and ca 90% in gills, but significantly decreased from ca 90% to 82% in the stipe tissues. Osmotic potential changes were similar to the tissue water content changes as the mushrooms mature. While osmotic potentials maintained -0.25 to -0.45 MPa in head and gill tissues, the potentials greatly decreased from -0.65 to -1.33 MPa in stipe tissues. Our results show that osmotic potentials in L. edodes tissues are exponentially proportional to tissue water contents, that strains differ in osmotic potential related to water, and that stipe tissues can still have nutritional value when they mature.

Environmental stress-related gene expression and blood physiological responses in olive flounder (Paralichthys olivaceus) exposed to osmotic and thermal stress

  • Choi, Cheol-Young
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2010
  • We isolated warm temperature acclimation-related protein 65-kDa (Wap65) cDNA from the liver of olive flounder and investigated the mRNA expression of Wap65 and HSP70 in olive flounder exposed to osmotic (17.5, 8.75, and 4 psu) and thermal stress (25 and $30^{\circ}C$). The mRNA expression of Wap65 and HSP70 was increased by thermal stress. The mRNA expression of HSP70 was also increased by osmotic stress, whereas no significant change in Wap65 expression was detected. These results indicate that Wap65 mRNA expression occurs specifically in response to increases in water temperature, but not in response to osmotic stress. Plasma cortisol levels were also increased by osmotic and thermal stress. We also utilized the stress hormone cortisol to examine whether Wap65 expression is thermal-stress-specific. Cortisol treatment increased HSP70 mRNA expression in vitro, but had no significant effect on Wap65 mRNA expression. Thus, thermal stress, but not osmotic stress, induces Wap65 expression.

Separation of Colloidal Particles by Osmotic Sink Field Flow Fractionation Using UF Hollow Fiber Membranes

  • Shin, Se-Jong;Min, Byoung-Ryul;Park, Jin-Won;Ahh, Ik-Sung;Lee, Kang-Taek;Lee, Jae-Hoon
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.59-68
    • /
    • 2001
  • Unlike existent field flow fractionation, new method, osmotic sink field flow fractionation is introduced and used ultrafiltration hollow fiber membranes as separation channel. This hollow fiber osmotic sink field flow fractionation is called HF-OSFFF. A theory that describes the retention, relaxation, resolution, plate number for the system, has been developed and experimentally verified by separation model of po1ystyrene latex beads. At external field, it is measured that radial flow rates change according to various concentrations of PEG solutions. Concentration of PEG solution vs. radial flow rate is a linear relation. For diameter distribution of unknown polymer sample, HF-OSFFF compared with the commercial capillary hydrodynamic flow fractionation (CHDF).

  • PDF

Waterproofing Mechanism of Hardened Cement Paste with Waterproofing Materials (구체방수제가 혼입된 시멘트 경화체의 방수 메카니즘)

  • Kang, Hyun Ju;Song, Myong Shin;Park, Jong Hun;Jeon, Se Hoon;Lee, Sung Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The pore volume of hardened cement with waterproofing materials is lower compared to that of hardened cement without waterproofing materials. Thus, fewer gaps will appear by means of chemical reactions between $Ca^{2+}$ ions in hardened cement and water, solutes, and other ions. Due to the selective permeability, the osmotic pressure of hardened cement can change due to physical effects such as the reduction of the pore volume and the reduction in the number of pores, as well as by the electrochemical reaction between water, solutes, other ions and $Ca^{2+}$ ions in hardened cement. Of course, these factors do not have independent effects but instead a combined complex effect. Accordingly, we studied changes in the osmotic pressure due to the difference in the pore structure of hardened cement. A pore size smaller than 1 nm in hardened cement had only a slight effect on the osmotic pressure, whereas a pore size larger than 1 nm had a direct effect on the osmotic pressure.

Change in Photosynthesis, Proline Content, and Osmotic Potential of Corn Seedling under High-Saline Condition

  • Yoon Byeong Sung;Jin Chengwn;Park Sang Un;Cho Dong Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.28-31
    • /
    • 2005
  • To identify salt-tolerance characteristics of corn seedling was treated in solution of 0, 50 and 100 mM NaCl of hydroponic cultivation. In photosynthesis of corn seedling, there was no large difference between 50mM and 0 mM NaCl solution, however, in 100 mM NaCl solution, the tolerance gradually decreased to $76\%,\;49\%,\;and\;31\%$ after one day, four days, and seven days, respectively, in comparison to 0 mM NaCl solution. Osmotic potential of corn in seedling period was significantly decreased with increasing saline level, however, free proline content in the plant on the ground was significantly increased with increasing saline level and with the lapse of time. In terms of correlation among major characteristics, there was a highly significant positive difference between osmotic pressure potential and photosynthesis, However, highly negative correlation was found between osmotic pressure potential and free proline content. In addition, it was expected that young seedling of corn with saline tolerance may be utilized in the transplantation in salt-accumulated land. Based on above-shown result, in terms of saline tolerance of Chalok-2 variety, growth suppression was serious with 100mM NaCl solution. However, growth was expected that seedling growth would be favorable under 50 mM NaCl solution.

The Stabilizing Effects of Phospholipids on the Human Erythrocyte Membranes (인체적혈구막(人體赤血球膜) 안정화(安定化)에 미치는 인지질(燐脂質)의 영향(影響))

  • Kim, Yong-Ki;Kim, Jae-Back
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1981
  • Phospholipids were examined for their capacity to protect human erythrocytes against hemolysis induced by hypotonic solution, p-hydroxymercuribenzoate or hematin. The following results were obtained. 1. Phosphatidyl choline, lysophosphatidyl choline and phophatidyl ethanoleamine as well as chlorpromazine prevented the osmotic hemolysis of human erythrocytes which occurred due to water influx into erythrocytes from medium, but showed no effect on hematin-induced hemolysis which occurred without the volume change of erythrocytes. 2. Human erythrocytes were found to be most sensitive to the antihemolytic action of phospholipids among mammalian erythrocytes from sheep, rabbit, rat and mouse. 3. Phospholipids at the concentrations showing their strong antihemolytic effect on human erythrocytes against osmotic hemolysis had no influence on methylene blue uptake and volume change of erythrocytes in hypotonic solution. 4. Phospholipids increased erythrocyte deformability 2 to 3 times over control group and there was aclose relationship between their antihemolytic action and increase of deformability as a function of their concentrations. 5. The phospholipids increased the resistance to osmotic hemolysis of human erythrocytes by increasing membrane elasticity through their incorporation into lipid bilayer without altering glucose metabolism and water influx to erythrocytes.

  • PDF

Effect of evaporation-induced osmotic changes in culture media in a dry-type incubator on clinical outcomes in in vitro fertilization-embryo transfer cycles

  • Chi, Hee-Jun;Park, Jun-Sang;Yoo, Chang-Seok;Kwak, Su-Jin;Son, Ho-Jeong;Kim, Seok-Gi;Sim, Chae-Hee;Lee, Kyeong-Ho;Koo, Deog-Bon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.284-292
    • /
    • 2020
  • Objective: This study investigated whether adding outer-well medium to inhibit osmotic changes in culture media in a dry-type incubator improved the clinical outcomes of in vitro fertilization-embryo transfer (IVF-ET) cycles. Methods: In culture dishes, the osmotic changes in media (20 µL)-covered oil with or without outer-well medium (humid or dry culture conditions, respectively) were compared after 3 days of incubation in a dry-type incubator. One-step (Origio) and G1/G2 (Vitrolife) media were used. Results: The osmotic changes in the dry culture condition (308 mOsm) were higher than in the humid culture conditions (285-290 mOsm) after 3 days of incubation. In day 3 IVF-ET cycles, although the pregnancy rate did not significantly differ between the dry (46.2%) and humid culture (51.0%) groups, the rates of abortion and ongoing pregnancy were significantly better in the humid culture group (1.5% and 49.5%, respectively) than in the dry culture group (8.3% and 37.8%, respectively, p<0.05). In day 5 IVF-ET cycles, the abortion rate was significantly lower in the humid culture group (2.2%) than in the dry culture group (25.0%, p<0.01), but no statistically significant difference was observed in the rates of clinical and ongoing pregnancy between the dry (50.0% and 25.0%, respectively) and humid culture groups (59.5% and 57.3%, respectively) because of the small number of cycles. Conclusion: Hyperosmotic changes in media occurred in a dry-type incubator by evaporation, although the medium was covered with oil. These osmotic changes were efficiently inhibited by supplementation of outer-well medium, which resulted in improved pregnancy outcomes.

Stomach Cancer Cell Lysis in PBS with Conductivity and Osmotic-Pressure Control (용액 전도도 및 삼투압 조절된 PBS에서의 위암 세포 전기 분해)

  • Kim, Min-Soo;Lee, Kook-Nyung;Cho, Su-Hyung;Kim, Byung-Gee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2137-2139
    • /
    • 2004
  • Cancer cell lysis at pulsed DC is realized using micromachined electrodes. In this research, quantitative analyses are performed on cell lysis results. The cell volume increasing at the pulses applied are analyzed in different medium conditions on osmotic pressure and conductivity, and the cell lysis procedures are studied in detail experimentally. Phosphate buffered saline (PBS) is used as the medium. To change the conductivity of PBS, NaCl concentration of PBS is adjusted, and inositol is used with PBS to control the effects of the osmotic pressure to cell lysis performance.

  • PDF

Settlement and Mass Change of the Porous Concrete Using Super Absorbent Polymer (고흡수성 수지를 활용한 다공 구조 콘크리트 가능성 연구)

  • Jo, Jae-Hyun;Park, Jae-Woong;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.311-312
    • /
    • 2023
  • In this study, porous concrete with improved functionality was developed by using superabsorbent polymer (SAP) to provide rooting space for plants. The depth of settlement and mass change according to the substitution and addition rate of SAP were determined by investigating the functional performance of SAP and the volume change upon saturation. Test results indicated the depth of penetration settlement increased as the substitution rate of SAP increased, but the mass change could not be confirmed as the addition rate of SAP increased. The instability of the specimens due to the excessive volume change of SAP, as well as the osmotic pressure phenomenon according to the pH concentration, were identified as the cause. Therefore, future studies are needed to investigate the appropriate substitution and addition rate of SAP, as well as to reduce the osmotic pressure phenomenon according to the pH concentration, which would contribute to the improvement of the functional performance of vegetation concrete.

  • PDF