• Title/Summary/Keyword: Osmotic Pressure

Search Result 209, Processing Time 0.022 seconds

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Effect of Diet and Water Intake on Aquaporin 2 Function

  • Kim, Jun-Mo;Kim, Tae-Hee;Wang, Tong
    • Childhood Kidney Diseases
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • Appropriate control of diet and water intake is important for maintaining normal blood pressure, fluid and electrolyte homeostasis in the body. It is relatively understood that the amount of sodium and potassium intake directly affects blood pressure and regulates ion transporters; Na and K channel functions in the kidney. However, little is known about whether diet and water intake regulates Aquaporin (AQP) function. AQPs, a family of aquaporin proteins with different types being expressed in different tissues, are important for water absorption by the cell. Water reabsorption is a passive process driven by osmotic gradient and water permeability is critical for this process. In most of the nephron, however, water reabsorption is unregulated and coupled to solute reabsorption, such as AQP1 mediated water absorption in the proximal tubule. AQP2 is the only water channel founded so far that can be regulated by hormones in the kidney. AQP2 expressed in the apical membrane of the principal cells in the collecting tubule can be regulated by vasopressin (antidiuretic hormone) controlling the final volume of urine excretion. When vasopressin binds to its receptor on the collecting duct cells, it stimulates the translocation of AQP2 to the membrane, leading to increased water absorption via this AQP2 water channel. However, some studies also indicated that the AQP2 is also been regulated by vasopressin independent mechanism. This review is focused on the regulation of AQP2 by diet and the amount of water intake on salt and water homeostasis.

Assessment of Power Generation by Pressure Retarded Osmosis Process from Spiral-Wound Membrane Pilot-Plant (나권형 모듈을 이용한 압력지연삼투 공정의 에너지생산에 관한 연구)

  • Go, Gil hyun;Park, Tae shin;Kang, Lim seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.476-481
    • /
    • 2016
  • Pressure retarded osmosis (PRO) is a quite new technique for power generation using an osmotically driven membrane process. In the PRO process, water permeates through a semipermeable membrane from a low concentration feed solution to a high concentration draw solution due to osmotic pressure. This study carried out to evaluate the performance of the 8 in spiral wound membrane module using reverse osmosis concentrate for a draw solution and reverse osmosis permeate for a feed solution. Three different flowrates of draw and feed solution, such as 2.4 L/min, 5.0 L/min, and 10.0 L/min were used to estimate the power density and water flux under various range of hydraulic pressure differences between 5 bar and 30 bar. In addition, the effects of feed and draw solution concentration, flowrate, and mixing ratio on 8 in spiral wound PRO membrane module performance were investigated in this study. As major results, increases of the draw solution concentration lead to the improvement of power denstiy, and water flux. Also, increase of flowrate resulted in the improvement of power density and water flux. In addition, optimal mixing ratio of draw and feed solution inlet flowrate was found to be 1:1 to attain a maximum power denstiy.

Effect of Tyvex Mulching and Trickle Irrigation on Fruit Quality in Satsuma Mandarin (Citrus unshiu Mark.) (온주밀감의 과실 품질에 미치는 타이벡 멀칭 및 점적관수의 효과)

  • Han, Sang-Heon;Kang, Hoon;Chae, Chi-Won
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.18-25
    • /
    • 2014
  • This study was conducted to investigated effects of water relation of mulching and trickle irrigation on the external and internal fruit quality in Satsuma mandarin grafted on trifoliate orange rootstock in a orchard assigned to randomly three groups; whole period of Tyvex mulching (TM), Tyvex mulching with trickle irrigation once a week from October 22 to harvesting season (WM) and non-mulching treatment (NM). The average soil moisture content in the TM was lower than the WM during the time of trickle irrigation from Oct. 21 to Nov. 28. The leaf water potential was at the level of ${\Psi}max$ of -1.5 to -2.5 MPa during whole period of Tyvex mulching treatment but gradually increased at the point of supplement of water. The water and osmotic potential in juice vesicle was decreased by drought but increased again in response to the supply of water in WM. The total soluble solids (TSS) in fruit juice was increased by drought stress, but diminished in response to supply of water after drought. The content of titratible acidity was increased by drought stress but gradually decreased due to supplement of water after drought, reached it at the level of 1%. It was suggested that the accumulation of the total soluble solids compensates the degree of active osmoregulation and the decrease in content of acidity accounts for the fast respiration and water uptake resulted of the water after drought.

Water relations of plants under environmental stresses: role of aquaporins

  • Kang, H.S.;Ahn, S.J.;Hong, S.W.;Chung, G.C.
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.71-80
    • /
    • 2005
  • Effects of low temperature ($8^{\circ}C$) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber; Cucumis sativus L.) and a chilling-resistant (figleaf gourd; Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, $Lp_r$) and of individual cortical cells (cell hydraulic conductivity, Lp). In figleaf gourd, there was a reduction only in hydrostatic $Lp_r$ but not in osmotic $Lp_r$ suggesting that the activity of water channels was not much affected by low root temperature (LRT)treatment in this species. Changes in cell Lp in response to chilling and recovery were similar asroot level, although they were more intense at the root level. Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (both at the root and cell level) often resulted in Lp and $Lp_r$ values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger forosmotic (representing the cell-to-cell passage of water) than for hydrostatic $Lp_r$. After a short term (1 d) exposure to $8\;^{\circ}C$ followed by 1 d at $20\;^{\circ}C$, hydrostatic $Lp_r$ of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. On the contrary, osmotic $Lp_r$ and cell Lp in both species remained high by a factor of 3 as compared to the control, possibly due to an increased activity of water channels. After pre-conditioning of roots at LRT, increased hydraulic conductivitywas completely inhibited by $HgCl_2$ at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins and alterations of root anatomy determine the water uptake in both species. To better understand the aquaporin function in plants under various stress conditions, we examined the transgenic Arabidopsisand tobacco plants that constitutively overexpress ArabidopsisPIP1;4 or PIP2;5 under various abiotic stress conditions. No significant differences in growth rates were found between the transgenic and wild-type plants under favorable growth conditions. By contrast, overexpression of PIP1;4 or PIP2;5 had a negative effect on seed germination and seedling growth under drought stress, whereas it had a positive effect under cold stress and no effect under salt stress. Measurement of water transport by cell pressure probe revealed that these observed phenotypes under different stress conditions were closely correlated with the ability of water transport by each aquaporin in the transgenic plants. Together, our results demonstrate that PIP-type aquaporins play roles in seed germination, seedling growth, and stress response of Arabidopsis and tobacco plants under various stress conditions, and emphasize the importance of a single aquaporin-mediated water transport in these cellular processes.

  • PDF

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.

Studies on the Efficient Concentration Process of Apple Juice with Reverse Osmosis Process (역삼투막 공정을 이용한 사과쥬스의 효율적인 농축공정에 관한 연구)

  • Hur, Sang-Sun;Choi, Yong-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.321-326
    • /
    • 1993
  • Membrane separation technology with polymeric membranes for the effective separation and energy conservation has emerged to be a new technology for separation in recent years. In this research, the reverse osmosis process was applied to the concentration process of clarified apple juices. The changes of concentration and permeate flux of apple juice in this process were measured at different membrane characteristics, operating pressures, temperature and flow rate. And the changes of quality were also measured at different pressures. The prediction model for the permeate flux based on these data was established. Generally, the osmotic pressure increased as the concentration of the feed increased in the RO process, which caused a reduction of permeate flux. The changes of permeate flux were not much dependent on temperature and flow rate, but very much dependent on pressure. The most effective factor in increased permeate flux was found to be the operating pressure, followed by temperature and flow rate. The final prediction model for the permeate flux was developed by the $SPSS^x$ computer program. The result showed that recovery of sugar was not affected by processing pressures, but the percentage recovery of total flavor was increased with increasing pressure.

  • PDF

10% Pentastarch Versus 5% Albumin Solution for Volume Expansion Following Cariopulmonary Bypass in Patients Undergoing Open Heart Surgery (개심수술후 혈량 증가를 위한 10% Pentastarch와 5% Albumin 용액의 비교연구)

  • 장병철
    • Journal of Chest Surgery
    • /
    • v.27 no.3
    • /
    • pp.177-186
    • /
    • 1994
  • Pentastarch is a hydroxyethyl starch similar to hetastarch, but lower average molecular weight and fewer hydroxyethyl groups which result in enhanced enzymatic hydrolysis and faster renal elimination.This report was performed to compare the clinical efficacy and safety of 10 % pentastarch[Pentaspan , group I] for plasma volume expansion after open heart surgery with that of 5% albumin[Plasmanate, group II]. There were no statistically significant differences between the group I [n=18] and group II [n:19] in the preoperative parameters [age, sex, body weight] and operative parameters[bypass time, aorta cross clamping time]. During the first 24 hours after arrival of the patient in the surgical intensive care unit, colloid solution [500--1000 ml] was infused to maintain left atrial pressure of more than 8 mmHg, or cardiac index of 2.0 L/min/M2 of more. In results, there were 3 complications of hypotension immediately after infusion of 5 % albumin solution and 2 among the 3 patients were excluded for the study. However there was no complication after infusion of 10 % pentastarch solution. Hemodynamic responses to infusion was similar for both groups, although in group I a greater increase in both left atrial pressure[mean 1.8 versus 0.7 mmHg, p< 0.05] and right atrial pressure [mean 2.2 versus 1.7 mmHg, p < 0.05] was observed during infusion of the first 500 ml. There were no significant differences in any of the measured respiratory parameters[PaO2, intrapulmonary shunt, and effective lung compliance]. Homodilution with colloid significantly reduced hemoglobin [mean 1.2 versus 0.8 gm/dl], and serum protein and albumin level[total protein;4.8$\pm$ 0.5 versus 5.2 $\pm$0.5 gm/dl, p < 0.05: albumin: 3.2 $\pm$0.4 versus 3.6 $\pm$0.6 gm/dl, p < 0.05] by 6:00 AM on 1 day postoperatively, however there were no significant differences on 7 day postoperatively. The mean serum colloid osmotic pressure and osmolarity was similar in both group.There were no abnormal findings of liver function and kidney function in all the patients. There were no significant between-group differences in bleeding time, platelets, prothrombin time, activated partial thromboplastin time and amount of chest tube output measured on 1st and 7th postoperative day. These findings demonstrated that 10% pentastarch is more effective and safe for plasma volume expension than 5 % albumin solution with no adverse effects on coagulation. Also 10 % pentastarch is less expensive than 5 % albumin and it would appeare to be a reasonable first choice for plasma volume expansion.

  • PDF

Comparison of Water Potential Parameters in Aster scaber and Synurus deltoides Leaves Obtained from P-V Curves (P-V 곡선법에 의한 참취와 수리취의 수분포텐셜 비교)

  • Lee, Kyeong-Cheol;Jeon, Seong-Ryeol;Han, Sang-Sup
    • Korean Journal of Plant Resources
    • /
    • v.24 no.4
    • /
    • pp.413-418
    • /
    • 2011
  • This study was carried out to establish a proper cultivation site and diagnose the drought-tolerance of Aster scaber and Synurus deltoides leaves by using Pressure-volume curves. In order to measure pressure-volume (P-V) curves, Aster scaber and Synurus deltoides were cut off above ground part and the tip of the cutting were placed in water, which was covered with a plastic bag. Samples were kept overnight (about 12 hours) in darkness at room temperature (20~25$^{\circ}C$) to achieve maximal turgor (full saturation). The pressure in the chamber was gradually increased from 0.3MPa to 1.8MPa by nitrogen gas. After measured, leaf samples were dried at 80$^{\circ}C$ for 48 hours and dry weight of each samples were determined. The result of the original bulk osmotic potential at maximum turgor ${\Psi}^{sat}_o$ sat was lower -0.8 MPa in Aster scaber leaves than -0.7 MPa Synurus deltoides leaves. Also the osmotic potential at incipient plasmolysis ${\Psi}^{tlp}_o$ in Aster scaber leave was -0.9 MPa. In contrast, the value of maximum bulk modulus of elasticity $E_{max}$ of Aster scaber leaves were approximately two folds higher than that of Synurus deltoides leaves. The values of the relative water content at incipient plasmolysis $RWC^{tlp}$ are all above 90% showing that the function of osmoregulation is somewhat better, and Vo/DW, Vt/DW, Ns/DW of Synurus deltoides leaves were approximately 1~2 times higher than that of Aster scaber leaves. Thus, responses to water relations of Aster scaber and Synurus deltoides such as ${\Psi}^{sat}_o$, ${\Psi}^{tlp}_o$, $E_{max}$, ${\Psi}_{P,max}$, $RWC^{tl}$ were shown that the Aster scaber leaves was slightly higher drought-tolerance than Synurus deltoides leaves. However, in both of Aster scaber and Synurus deltoides, occurring incipient plasmolysis at the high water content, have a relatively lower drought-tolerance property indicating that growth of these plants are cultivated appropriate in high moisture soil sites.

Properties of Semen and Sperm Motility in Black Seabream, Acanthopagrus schlegeli (감성돔, Acanthopagrus schlegeli 정액의 특성과 정자의 운동성)

  • Chang Young Jin;Lim Han Kyu;Kho Kang Hee
    • Journal of Aquaculture
    • /
    • v.8 no.3
    • /
    • pp.149-157
    • /
    • 1995
  • In order to obtain the basic knowledges concerned to the semen preservation of aquacultural fishes, studies on the physical and chemical properties of semen, and sperm motility with the different osmotic pressures making by adding $Na^+,\;K^+,\; Mg^{++},\;and\;Ca^{++}$ to artificial seawater (ASW) were conducted in black seabream, Acanthopagrus schlegeli. Average semen volume per fish in one strip was 1.97ml and sperm concentration was $2.33\pm1.30\times10^{10}$ sperm/ml. Spermatocrit and pH of semen were $90.6\pm5.0\;and\;8.3\pm0.1$, respectively, Osmotic pressures of rearing seawater, seminal fluid and plasma were $939\pm24,382\pm70\;and\;342\pm77$ mOsm/l, and $Na^+,\;K^+$ and $Cl^-$ concentrations of seminal fluid were $169.5\pm4.5,\;4.9\pm2.2,\;156.0\pm2.0\;mM/l$, respectively. When semen were diluted by using $Na^+,\;K^+,\;Mg^{++}\;and\;Ca^{++}$ free ASW, only $Na^+$ free ASW had no sperm motility. As raising osmotic pressure graduary by addition of 1M NaCl to the $Na^+$ free ASW, spermatozoa showed the high motilities in 457-1128 mOsm/l, but the low motilities in 1398-1736 mOsm/l. In the case of same treatments with 1M of KCl, $MgC1_2\;and\;CaC1_2$ to the $K^+,\;Mg^{++}\;and\;Ca^{++}$ free ASW, spermatozoa revealed the high motilities in $904\~1434,\;818\~1175\;and\;956\~1343$ mOsm/l, respectively.

  • PDF