• Title/Summary/Keyword: Oscillation Phenomenon

Search Result 125, Processing Time 0.019 seconds

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.

Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide

  • Yun, Kum-Hee;Seo, Sun-Hwa;Kim, Bo-Mi;Joe, Ara;Han, Hyo-Won;Kim, Jong-Young;Jang, Eue-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2795-2799
    • /
    • 2013
  • Irradiation of gold nanorods (GNRs) with laser light corresponding to the longitudinal surface plasmon oscillation results in rapid conversion of electromagnetic energy into heat, a phenomenon commonly known as the photothermal effect of GNRs. Herein, we propose a facile strategy for increasing the photothermal conversion efficiency of GNRs by integration to form graphene oxide (GO) nanocomposites. Moreover, conjugation of iron oxide (IO) with the GO-GNR nanohybrid allowed magnetic enrichment at a specific target site and the separated GO-IO-GNR assembly was rapidly heated by laser irradiation. The present GO-IO-GNR nanocomposites hold great promise for application in various biomedical fields, including surface enhanced Raman spectroscopy imaging, photoacoustic tomography imaging, magnetic resonance imaging, and photothermal cancer therapy.

A Study on the Eigenmode Characteristics by Changing Damping Parameters of Secondary Suspension (Damper) on Railway Vehicles (철도차량 이차현가장치 댐퍼 매개변수 변화에 따른 고유모드 특성에 대한 연구)

  • Shin, Yu-Jeong;You, Won-Hee;Park, Joon-Hyuk;Hur, Hyun-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.796-804
    • /
    • 2011
  • Railway vehicles are capable of indicating several types of instability. This phenomenon, which is called hunting motion, is a self excited lateral oscillation that is caused by the running velocity of the vehicle and wheel frail interactive forces. The interactive forces act to change effectively the damping characteristics of railway vehicle systems. This paper will show the impact of instability on the transfer function behavior using damping characteristics of secondary suspension. The vehicle dynamics are modeled using a 17 degree of freedom considering linear wheel/rail contact. The paper deals with certain condition of the damper characteristics that one is about various damping coefficient and another is equipped damper direction.

Sea-level Change and Coastal Erosion (해수면 변화와 해안 침식)

  • Jeon, Dong-Chull
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.289-304
    • /
    • 1995
  • Time series of the relative sea levels at the selected tide-gauge stations in the North Pacific and historical aerial photographs in the Hawaiian Islands are analyzed. Long-term rising trend of sea level ranges from +1 to +5 mm/yr at most of the stations, which is primarily due to global warming and tectonic motion of the plates. The annual and interannual fluctuations of sea level result from the thermal expansion/contraction of sea-surface layer due to the annual change of the solar radiation and possibly from a coupled ocean-atmosphere phenomenon associated with an ENSO event, respectively. Sea-level changes in three different time-scales (linear trend. annual oscillation, and interannual fluctuation) and their quantitative contribution to the shoreline changes as a result of long-term cross-shore sediment transport arc hypothesized.

  • PDF

Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage (스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계)

  • Nam, Yun-Su;Choe, Jae-Hyeok;Gang, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

Spray Characteristics of a Pulsed Liquid Jet into a Cross-flow of Air (아음속 횡단 유동장으로 펄스 분사된 액체 제트의 분무특성)

  • Lee, In-Chul;Byun, Young-Wu;Koo, Ja-Ye
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.61-64
    • /
    • 2008
  • The present study of these experiments are close examination of spray characteristics that are continuous liquid jet and modulated pressure pulse liquid jet. The experiments were conducted using water, over a range of cross-flow velocities from 42${\sim}$136 m/s, with injection frequencies of 35.7${\sim}$166.2 Hz. Between continuous cross-flow jet and pressure pulsed cross-flow jet for characteristics of penetration, breakup point, spray angle and macro spray shape are investigated experimentally. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than pressure pulse frequency. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of pressure pulsation frequency, an inclination of SMD for the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various frequency of pressure pulse was same distribution. And volume flux was decreased when the frequency of pressure pulse increase.

  • PDF

Vortex induced vibration analysis of a cylinder mounted on a flexible rod

  • Zamanian, Mehdi;Garibaldi, Luigi
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.441-455
    • /
    • 2019
  • In this study, vortex induced vibrations of a cylinder mounted on a flexible rod are analyzed. This simple configuration represents the key element of new conception bladeless wind turbine (Whitlock 2015). In this study the structure oscillations equation coupled to the wake oscillation equation for this configuration are solved using analytical perturbation method, for the first time. An analytical expression that predicts the lock-in phenomena range of wind speed is derived. The discretized equations of motion are also solved using RKF45 numerical method. The equations of motion are discretized by Galerkin method. Free vibration mode shape of the structure taking into account the discontinuity of the cross section are used as comparison function. Numerical results are compared to the analytical results, and they show a satisfying agreement. The effect of system parameters on the oscillations of structure and wake as well as on the lock-in domain are presented. Moreover, it is shown that the values of wind speed triggering the start and the stop of the lock-in phenomenon, for increasing wind speed are different from those values obtained during the reverse process, i.e., when the wind speed decreases.

Spray Characteristics of Modulated Liquid Jet Injected into a Subsonic Crossflow (주파수 변조 분사가 횡단 유동장의 분무 특성에 미치는 영향)

  • Lee, I.C.;Kim, J.H.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.59-64
    • /
    • 2009
  • These experiments are close examination of spray characteristics that are continuous liquid jet and modulated liquid jet. The experiments were conducted using water, over a range of crossflow velocities from $42{\sim}l36\;m/s$, with modulation frequencies of $35.7{\sim}166.2\;Hz$. Between continuous crossflow jet and modulated cross-flow jet of penetration, breakup point, spray angle and macro spray shape are experimentally investigated with image analysis. In cross-flow field, main parameter of liquid jet for breakup was cross-flow stream rather than modulation effect. As oscillation of the periodic pressure that could make liquid jet moved up and down, the mixing efficiency was increased. Also, a bulk of liquid jet puff was detected at upper field of liquid surface. So, this phenomenon has a good advantage of mixing spray from concentration of center area to outer area. Because of modulation frequency, SMD inclination of the structured layer was evanescent. Cross-sectional characteristics of SMD at downstream area were non-structured distributions. Then cross-sectional characteristics of SMD size were about same tendency over a range that is effect of spray mixing. The tendency of volume flux value for various modulation frequency was same distribution. And volume flux was decreased when the modulation frequency increase.

  • PDF

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.