DOI QR코드

DOI QR Code

Critical Enhancement of Photothermal Effect by Integrated Nanocomposites of Gold Nanorods and Iron Oxide on Graphene Oxide

  • Yun, Kum-Hee (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Seo, Sun-Hwa (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Bo-Mi (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Joe, Ara (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Han, Hyo-Won (Department of Applied Chemistry, Kumoh National Institute of Technology) ;
  • Kim, Jong-Young (Korea Institute of Ceramic Engineering & Technology) ;
  • Jang, Eue-Soon (Department of Applied Chemistry, Kumoh National Institute of Technology)
  • Received : 2013.07.15
  • Accepted : 2013.07.23
  • Published : 2013.09.20

Abstract

Irradiation of gold nanorods (GNRs) with laser light corresponding to the longitudinal surface plasmon oscillation results in rapid conversion of electromagnetic energy into heat, a phenomenon commonly known as the photothermal effect of GNRs. Herein, we propose a facile strategy for increasing the photothermal conversion efficiency of GNRs by integration to form graphene oxide (GO) nanocomposites. Moreover, conjugation of iron oxide (IO) with the GO-GNR nanohybrid allowed magnetic enrichment at a specific target site and the separated GO-IO-GNR assembly was rapidly heated by laser irradiation. The present GO-IO-GNR nanocomposites hold great promise for application in various biomedical fields, including surface enhanced Raman spectroscopy imaging, photoacoustic tomography imaging, magnetic resonance imaging, and photothermal cancer therapy.

Keywords

References

  1. Cha, E.-J.; Jang, E.-S.; Sun, I.-C.; Lee, I. J.; Ko, J. H.; Kim, Y. I.; Kwon, I. C.; Kim, K.; Ahn, C.-H. J. Controlled Release 2011, 155, 152-158. https://doi.org/10.1016/j.jconrel.2011.07.019
  2. Jang, E.-S.; Shin, J.-H.; Ren, G.; Park, M.-J.; Cheng, K.; Chen, X.; Wu, J. C.; Sunwoo, J. B.; Chen, Z. Biomaterials 2012, 33, 5584-5592. https://doi.org/10.1016/j.biomaterials.2012.04.041
  3. Wang, Y.; Liu, Y.; Luehmann, H.; Xia, X.; Wan, D.; Cutler, C.; Xia, Y. Nano Lett. 2013, 13, 581-585. https://doi.org/10.1021/nl304111v
  4. Zhou, Z.; Wang, L.; Chi, X.; Bao, J.; Yang, L.; Zhao, W.; Chen, Z.; Wang, X.; Chen, X.; Gao, J. ACS Nano 2013, 7, 3287-3296. https://doi.org/10.1021/nn305991e
  5. Mazzucchelli, S.; Colombo, M.; Verderio, P.; Rozek, E.; Andreata, F.; Galibiati, E.; Tortora, P.; Corsi, F.; Prosperi, D. Angew. Chem. Int. Ed. 2013, 52, 3121-3125. https://doi.org/10.1002/anie.201209662
  6. Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T.; Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236-1250. https://doi.org/10.1039/c2cs35392j
  7. Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. Biomaterials 2012, 33, 1238-1244. https://doi.org/10.1016/j.biomaterials.2011.10.070
  8. Huo, S.; Ma, H.; Huang, K.; Liu, J.; Wei, T.; Jin, S.; Zhang, J.; He, S.; Liang, X.-J. Cancer Res. 2013, 73, 319-330. https://doi.org/10.1158/0008-5472.CAN-12-2071
  9. von Maltzahn, G.; Park, J.-H.; Argawal, A.; Bandaru, N. K.; Das, S. K.; Sailor, M. J.; Bhatia, S. N. Cancer Res. 2009, 69, 3892-3900. https://doi.org/10.1158/0008-5472.CAN-08-4242
  10. Jokerst, J. V.; Thangaraj, M.; Kempen, P. J.; Sinclair, R.; Gambhir, S. S. ACS Nano 2012, 6, 5920-5930. https://doi.org/10.1021/nn302042y
  11. Jang, B.; Kim, Y. S.; Choi, Y. Small 2011, 7, 265-270. https://doi.org/10.1002/smll.201001532
  12. Choi, W. I.; Kim, J.-Y.; Kang, C.; Byeon, C. C.; Kim, Y. H.; Tae, G. ACS Nano 2011, 5, 1995-2003. https://doi.org/10.1021/nn103047r
  13. Burke, A. R.; Singh, R. N.; Carroll, D. L.; Wood, J. C. S.; D'Agostino, R. B., Jr.; Ajayan, P. M.; Torti, F. M.; Torti, S. V. Biomaterials 2012, 33, 2961-2970. https://doi.org/10.1016/j.biomaterials.2011.12.052
  14. Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902-907. https://doi.org/10.1021/nl0731872
  15. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Rotts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906-3924. https://doi.org/10.1002/adma.201001068
  16. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4, 4806-4814. https://doi.org/10.1021/nn1006368
  17. Jang, E.-S. J. Korean Chem. Soc. 2012, 56, 478-483. https://doi.org/10.5012/jkcs.2012.56.4.478
  18. Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065-4067.
  19. Matsumoto, Y.; Koinuma, M.; Ida, S.; Hayami, S.; Taniguchi, T.; Hatakeyama, K.; Tateishi, H.; Watanabe, Y.; Amano, S. J. Phys. Chem. C 2011, 115, 19280-19286. https://doi.org/10.1021/jp206348s
  20. Park, K.; Drummy, L. F.; Wadams, R. C.; Koerner, H.; Nepal, D.; Fabris, L.; Vaia, R. A. Chem. Mater. 2013, 25, 555-563. https://doi.org/10.1021/cm303659q
  21. Liu, J.; Bai, H.; Wang, Y.; Liu, Z.; Zhang, X.; Sun, D. D. Adv. Funct. Mater. 2010, 20, 4175-4181. https://doi.org/10.1002/adfm.201001391
  22. Wang, J.; Tsuzuki, T.; Tang, B.; Hou, X.; Sun, L.; Wang, X. Appl. Mater. Interfaces 2012, 4, 3084-3090. https://doi.org/10.1021/am300445f
  23. Dong, Y.; Li, J.; Shi, L.; Xu, J.; Wang, X.; Guo, Z.; Liu, W. J. Mater. Chem. A 2013, 1, 644-650 https://doi.org/10.1039/c2ta00371f
  24. Galanzha, E. I.; Shashkov, E. V.; Kelly, T.; Kim, J.-W.; Yang, L.; Zharov, V. P. Nature Nanotech. 2009, 4, 855-860. https://doi.org/10.1038/nnano.2009.333