• Title/Summary/Keyword: OsHSF7

Search Result 3, Processing Time 0.019 seconds

OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor

  • Liu, Jin-Ge;Qin, Qiu-lin;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • Three novel Class A genes that encode heat shock transcription factor (HSF) were cloned from Oryza Sativa L using a yeast hybrid method. The OsHSF7 gene was found to be rapidly expressed in high levels in response to temperature, which indicates that it may be involved in heat stress reception and response. Over-expression of OsHSF7 in transgenic Arabidopsis could not induced over the expression of most target heat stress-inducible genes of HSFs; however, the transcription of some HSF target genes was more abundant in transgenic plants following two hours of heat stress treatment. In addition, those transgenic plants also had a higher basal thermotolerance, but not acquired thermotolerance. Collectively, the results of this study indicate that OsHSF7 might play an important role in the response to high temperature. Specifically, these findings indicate that OsHSF7 may be useful in the production of transgenic monocots that can over-express protective genes such as HSPs in response to heat stress, which will enable such plants to tolerate high temperatures.

Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice

  • Liu, Ai-Ling;Zou, Jie;Liu, Cui-Fang;Zhou, Xiao-Yun;Zhang, Xian-Wen;Luo, Guang-Yu;Chen, Xin-Bo
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.

Analysis of ZjWRKY3, ZjWRKY7 induced by multiple stress in Zoysia japonica (다양한 스트레스에 유도되는 들잔디 ZjWRKY3, ZjWRKY7의 분석)

  • Kim, Woo-Nam;Song, In-Ja;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Lee, Yong-Eok;Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.220-228
    • /
    • 2017
  • Many crops including cereals, tuber crops, feeds, and turf grasses are often damaged by various environmental stresses such as drought, salt, cold, and high temperature, causing the reduction of their productivity. Plants are sessile and cannot escape from environmental stresses. Thus, plants evolve in the direction of overcoming the environmental stresses. Some plant genes such as ARF, ABI3, NAC, HSF, and WRKY are known to respond to environmental stresses as they transcriptionally regulate the stress response pathways. For example, the OsWRKY76 gene contributes to the enhanced resistance to low temperatures and pathogenic infections. The AtWRKY28 also plays a role in environmental stresses. Zoysiagrass (Zoysia japonica Steud.) is popularly grown for gardens and golf courses. However, the function of the WRKY gene, another environmental stress-related gene, is not known in zoysiagrass. In this study, the ZjWRKY3 and ZjWRKY7 genes with one shared WRKY domain have been isolated in zoysiagrass. The expression of these genes increased in response to low temperature, drought, and salt stresses. Furthermore, the infection of the brown patch-causing Rhozoctonia solani induced the expression of ZjWRKY3 and ZjWRKY7. The corresponding proteins bind to the W-box of the Zjchi promoter, possibly regulating their transcriptions. The researchers suggest that the ZjWRKY3 and ZjWRKY7 genes transcriptionally regulate abiotic and biotic stress related downstream genes.