Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.1.090

Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice  

Liu, Ai-Ling (Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University)
Zou, Jie (College of Bioscience and Biotechnology, Hunan Agricultural University)
Liu, Cui-Fang (College of Bioscience and Biotechnology, Hunan Agricultural University)
Zhou, Xiao-Yun (Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University)
Zhang, Xian-Wen (Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University)
Luo, Guang-Yu (College of Bioscience and Biotechnology, Hunan Agricultural University)
Chen, Xin-Bo (Key Laboratory for Crop Germplasm Innovation and Utilization of Hunan Province, Hunan Agricultural University)
Publication Information
BMB Reports / v.46, no.1, 2013 , pp. 31-36 More about this Journal
Abstract
Heat shock proteins play an important role in plant stress tolerance and are mainly regulated by heat shock transcription factors (Hsfs). In this study, we generated transgenic rice over-expressing OsHsfA7 and carried out morphological observation and stress tolerance assays. Transgenic plants exhibited less, shorter lateral roots and root hair. Under salt treatment, over-expressing OsHsfA7 rice showed alleviative appearance of damage symptoms and higher survival rate, leaf electrical conductivity and malondialdehyde content of transgenic plants were lower than those of wild type plants. Meanwhile, transgenic rice seedlings restored normal growth but wild type plants could not be rescued after drought and re-watering treatment. These findings indicate that over-expression of OsHsfA7 gene can increase tolerance to salt and drought stresses in rice seedlings.
Keywords
Drought tolerance; OsHsfA7; Rice; Root morphology; Salt tolerance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K. and Shigeoka, S. (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547.   DOI   ScienceOn
2 Ogawa, D., Yamaguchi, K. and Nishiuchi, T. (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58, 3373-3383.   DOI   ScienceOn
3 Shim, D., Hwang, J. U., Lee, J., Lee, S., Choi, Y., An, G., Martinoia, E. and Lee, Y. (2009) Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell. 21, 4031-4043.   DOI   ScienceOn
4 Huang, C., Ding, S., Zhang, H., Du, H. and An, L. (2011) CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181, 57-64.   DOI   ScienceOn
5 Tripathi, V., Parasuraman, B., Laxmi, A. and Chattopadhyay, D. (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58, 778-790.   DOI   ScienceOn
6 Wang, Y., Wan, L., Zhang, L., Zhang, Z., Zhang, H., Quan, R., Zhou, S. and Huang, R. F. (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol. Biol. 78, 275-288.   DOI   ScienceOn
7 Liu, A. L., Zou, J., Zhang, X. W., Zhou, X. Y., Wang, W. F., Xiong, X. Y., Chen, L. Y. and Chen, X. B. (2010) Expression profiles of class a rice heat shock transcription factor genes under abiotic stresses J. Plant Biol. 53, 142-149.   과학기술학회마을   DOI   ScienceOn
8 Haslbeck, M. (2002) sHsps and their role in the chaperone network. Cell Mol. Life Sci. 59, 1649-1657.   DOI   ScienceOn
9 Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852-1858.   DOI   ScienceOn
10 Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K., Nover, L., Port, M., Scharf, K. D., Tripp, J., Weber, C., Zielinski, D. and von Koskull- Doring, P. (2004) Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471-487.   DOI   ScienceOn
11 Morimoto, R. I. (1998) Regulation of the heat stress transcriptional response: cross talk between family of heat stress factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796.   DOI   ScienceOn
12 Schöffl, F., Prändl, R. and Reindl, A. (1998) Regulation of the heat shock response. Plant Physiol. 117, 1135-1141.   DOI   ScienceOn
13 Wu, C. (1995) Heat shock transcription factors: structure and regulation. Annu. Rev. Cell Dev. Biol. 11, 441-469.   DOI   ScienceOn
14 Döring, P., Treuter, E., Kistner, C., Lyck, R., Chen, A. and Nover, L. (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant. Cell 12, 265-278.   DOI
15 Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A. and Scharf, K. D. (2001) Arabidopsis and the Hsf world: How many heat stress transcription factors do we need? Cell Stress Chaperones. 6, 177-189.   DOI   ScienceOn
16 Chauhan, H., Khurana, N., Agarwal, P. and Khurana, P. (2011) Heat shock factors in rice (Oryza sativa L.): genome- wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genomics. 286, 171-187.   DOI   ScienceOn
17 Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. and Yamada, K. (2002) A rice spotted leaf gene, Sp l7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. U. S. A. 99, 7530-7535.   DOI   ScienceOn
18 Almoguera, C., Rojas, A., Díaz-Martín, J., Prieto-Dapena, P., Carranco, R. and Jordano, J. (2002) A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower. J. Biol. Chem. 277, 43866-43872.   DOI   ScienceOn
19 Kotak, S., Vierling, E., Bäumlein, H. and von Koskull- Doring, P. (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195.   DOI   ScienceOn
20 Baniwal, S. K., Chan, K. Y., Scharf, K. D. and Nover, L. (2007) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J. Biol. Chem. 282, 3605-3613.
21 Liu, H. C., Liao, H. T. and Charng, Y. Y. (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant. Cell Environ. 34, 738-751.   DOI   ScienceOn
22 Bajji, M., Kinet, J. and Lutts, S. (2002) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36, 61-70.   DOI   ScienceOn
23 Marnett, L. J. (1999) Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res-Fund Mol. M. 424, 83-95.   DOI   ScienceOn
24 Xie, Z., Duan, L., Tian, X., Wang, B., Eneji, A. E. and Li, Z. (2008) Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical- scavenging activity. Plant Physiol. 165, 375-384.   DOI   ScienceOn
25 Scharf, K. D., Berberich, T., Ebersberger, I. and Nover, L. (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim. Biophys. Acta. 1819, 104-119.   DOI   ScienceOn
26 Charng, Y. Y., Liu, H. C., Liu, N. Y., Chi, W. T., Wang, C. N., Chang, S. H. and Wang, T. T. (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143, 251-262.
27 Liu, J. G., Qin, Q. L., Zhang, Z., Peng, R. H., Xiong, A. S., Chen, J. M. and Yao, Q. H. (2009) OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Rep. 42, 16-21.   과학기술학회마을   DOI   ScienceOn
28 Schmidt, R., Schippers, J. H., Welker, A., Mieulet, D., Guiderdoni, E. and Mueller-Roeber, B. (2012) Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. japonica. AoB Plants. doi:10. 1093/aobpla/pls011.   DOI   ScienceOn
29 Busch, W., Wunderlich, M. and Schoffl, F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41, 1-14.
30 Xin, H., Zhang, H., Chen, L., Li, X., Lian, Q., Yuan, X., Hu, X., Cao, L., He, X. and Yi, M. (2010) Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep. 29, 875-885.   DOI
31 Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S. and Tanaka, H. (2006) Early infection of scutellum tissue with Agrobacterium allows high speed transformation of rice. Plant J. 47, 969-976.   DOI   ScienceOn
32 Zou, J., Liu, C. F., Liu, A. L., Zou, D. and Chen, X. B. (2012) Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J. Plant. Physiol. 169, 628-635.   DOI   ScienceOn
33 Yokotani, N., Ichikawa, T., Kondou, Y., Matsui, M., Hirochika, H., Iwabuchi, M. and Oda, K. (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta. 227, 957-967.   DOI   ScienceOn
34 Lohmann. C., Eggers-Schumacher, G., Wunderlich, M. and Schoffl, F. (2004) Two different heat shock factors regulate immediate early expression of stress genes in Arabidopsis. Mol. Genet. Genomics. 271, 11-21.   DOI   ScienceOn
35 Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L. and Scharf, K. D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555-1567.   DOI   ScienceOn
36 Zhu, B., Ye, C., Lü, H., Chen, X., Chai, G., Chen, J. and Wang, C. (2006) Identification and characterization of a novel heat shock transcription factor gene, GmHsfA1, in soybeans (Glycine max). J. Plant Res. 119, 247-256.   DOI   ScienceOn
37 Li, H. Y., Chang, C. S., Lu, L. S., Liu, C. A., Chan, M. T. and Charng, Y. Y. (2003) Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfA1b) enhances chilling tolerance in transgenic tomato. Bot. Bull. Acad. Sin. 44, 129-140.
38 Banti, V., Mafessoni, F., Loreti, E., Alpi, A. and Perata, P. (2010) The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis. Plant Physiol. 152, 1471-1483.   DOI   ScienceOn
39 Li, C. G., Chen, Q. J., Gao, X. Q., Qi, B. S., Chen, N. Z., Xu, S. M., Chen, J. and Wang, X. C. (2005) AtHsfA2 modulates expression of stress responsive genes and enhances tolerance to heat and oxidative stress in Arabidopsis. Sci. China C. Life Sci. 48, 540-550.   DOI   ScienceOn
40 Yu, X., Peng, Y. H., Zhang, M. H., Shao, Y. J., Su, W. A. and Tang, Z. C. (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res. 16, 599-608.   DOI   ScienceOn
41 Kuk, Y. I., Shin, J. S., Burgos, N. R., Hwang, T. E., Han, O., Cho, B. H., Jung, S. and Guh, J. O. (2003) Antioxidative enzymes offer protection from chilling damage in rice plants. Crop. Sci. 43, 2109-2117.   DOI   ScienceOn