• Title/Summary/Keyword: Oryza sativa L.

Search Result 694, Processing Time 0.047 seconds

Selection of Herbicide Tolerant Cell lines from $\gamma$-ray-Irradiated Cell Cultures in Rice (Oryza sativa L. cv. Ilpumbyeo)

  • Bae, Chang-Hyu;Lee, Young-Ill;Lim, Yong-Pyo;Seo, Yong-Won;Lee, Do-Jin;Yang, Deuk-Chun;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.123-127
    • /
    • 2002
  • Herbicide tolerant rice (Oryza sativa L. cv. Ilpumbyeo) cell lines were selected from $\gamma$-ray-irradiated anther-derived cell cultures. The anther-derived cell clusters were small (300 to 400 ${\mu}{\textrm}{m}$ in diameter) and uniform ones that were screened by miracloth filtering. The cell suspensions were very efficient to plate one layer onto agar medium and to screen target cell lines. Herbicide tolerant cell lines were selected by 5 mg/L cyhalofop butyl (CHB) treatment by using the small cell suspensions on agar N6 medium containing 1 mg/L 2,4-D and 0.2 mg/L kinetin. Of the cell lines, one line (CHB-1) showed stable tolerance at 10 mg/L concentration after 6-month culture without herbicide suspension. Growth stability of CHB-1 was similar to that of control cell line on 10 mg/L CHB containing medium. In this experiment we established herbicide tolerant cell line selection system by using anther-derived uniform-cell suspensions with $\gamma$-ray-irradiation.

Protective Effect of Artificially Enhanced Level of L-Ascorbic Acid against Water Deficit-Induced Oxidative Stress in Rice Seedlings

  • Boo, Yong Chool;Cho, Moonjae;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.66-70
    • /
    • 1999
  • Effects of the enhanced level of L-ascorbic acid (AA) on the water deficit-induced oxidative damage were studied in rice (Oryza sativa L.) seedlings. The seedlings sprayed with 20 to 80 mM L-galactono-${\gamma}$-lactone (GL), a putative precursor of AA, showed 2 to 5-fold higher levels of AA compared with controls. Pretreatment of the seedlings with GL prior to water stress imposition caused virtually no effect on dehydration of tissues during water deficit but substantially mitigated oxidative injury, as accessed by 2-thiobarbituric acid-reactive substances, ${\alpha}$-tocopherol, chlorophylls and ${\beta}$-carotene. Proline accumulation during water stress was also significantly lowered in the treated seedlings. In a complementary experiment, AA retarded photodegradation of ${\alpha}$-tocopherol in isolated thylakoids far more efficiently than glutathione. GL in itself did not show any noticeable reactivity toward ${\alpha}$-tocopheroxyl radical. The results demonstrate the antioxidative function of AA in rice seedlings encountering water-limited environments, suggesting a critical role of AA as a defense against oxidative stress in plants.

  • PDF

Molecular Cloning and Functional Analysis of Rice (Oryza sativa L.) OsNDR1 on Defense Signaling Pathway

  • Lee, Joo-Hee;Kim, Sun-Hyung;Jung, Young-Ho;Kim, Jung-A;Lee, Mi-Ok;Choi, Pil-Gyu;Choi, Woo-Bong;Kim, Kyung-Nam;Jwa, Nam-Soo
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • A novel rice (Oryza sativa L.) gene, homologous to Arabidopsis pathogenesis-related NDR1 gene, was cloned from cDNA library prepared from 30 min Magnaporthe grisea -treated rice seedling leaves, and named as OsNDR1. OsNDR1 encoded a 220-aminoacid polypeptide and was highly similar to the Arabidopsis AtNDR1 protein. OsNDR1 is a plasma membrane (PM)-localized protein, and presumes through sequence analysis and protein localization experiment. Overexpression of OsNDR1 promotes the expression of PBZ1 that is essential for the activation of defense/stressrelated gene. The OsNDR1 promoter did not respond significantly to treatments with either SA, PBZ, or ETP. Exogenously applied BTH induces the same set of SAR genes as biological induction, providing further evidence for BTH as a signal. Presumably, BTH is bound by a receptor and the binding triggers a signal transduction cascade that has an ultimate effect on transcription factors that regulate SAR gene expression. Thus OsNDR1 may act as a transducer of pathogen signals and/or interact with the pathogen and is indeed another important step in clarifying the component participating in the defense response pathways in rice.

Gene flow from herbicide resistant genetically modified rice to conventional rice (Oryza sativa L.) cultivars

  • Han, Sung Min;Lee, Bumkyu;Won, Ok Jae;Hwang, Ki Seon;Suh, Su Jeoung;Kim, Chang-Gi;Park, Kee Woong
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • Rice (Oryza sativa L.) is an important feeding crop in Asia, and utilization of genetically modified (GM) rice is highly demanding. For co-existence of GM rice and non-GM rice, the proper confinement measures should be provided. Thus, we surveyed gene flow from herbicide resistant GM rice to the conventional rice cultivars in the field tests. Gene flow frequency decreased with increasing distance between the pollen donor and recipients and did not exceed more than 1% even at the nearest distance. In single recipient model plot, a maximum gene flow frequency was observed at the shortest distance and hybrid was detected up to 12 m from the pollen donor. The direction of gene was coincided with the dominant wind direction. Gene flow assessment to multiple recipient plots was conducted under the high raining season by chance, and abrupt decline of gene flow frequency and maximum distance were resulted. According to the survey results, current regulation for isolation distance is reasonable for environmental safety or for general crop production. However, we suggest an alternative measure for GM rice cultivation that should be supplemented to overcome the out of estimation and in the environment asking higher security levels.

Development of Protein Biomarkers for the Authentication of Organic Rice

  • Lee, Ju-Young;Lim, Jinkyu
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.355-361
    • /
    • 2015
  • The rice protein profiles of Oryza sativa L (Koshihikari) grown under organic and conventional cultivation regimes were compared on 2-D gels to develop diagnostic marker proteins for organic rice. The selected proteins, differentially expressed between organic and conventional rice, were compared with the differentially expressed proteins of another organic and conventional rice pairing, produced at a different location. In the first comparison among conventional, no-chemical, and organic rice grown in the same region, Korea, 13 proteins exhibiting differential expression in organic and conventionally grown plants were selected. Eight of the 13 proteins were down-regulated, and the 5 remaining proteins were up-regulated from conventional to organic rice. The second comparison pairing from Kyungju, revealed 12 differentially expressed proteins, with 8 down-regulated and 4 up-regulated proteins. Ten of the differentially expressed proteins that overlapped between the two comparison sets could not be clustered into any functional group using a functional annotation clustering tool. Further comparisons using another set of conventional and organic rice, belonging to a different variety of Oryza sativa L and produced in Sanchung, revealed 8 differentially expressed proteins, 5 of which were down-regulated and 3 of which were upregulated in the organic rice. Overall, 3 differentially expressed proteins were commonly found in all three organic rice crops. These 3 proteins, along with other overlapping differentially expressed proteins, can provide a good starting point for the development of signature proteins that can be used for the authentication of organic rice with a follow-up studies with more comparison sets.