• Title/Summary/Keyword: Oryza sativa(Tongil)

Search Result 28, Processing Time 0.022 seconds

Water Use Efficiency in Rice(Oryza sativa L.) Plant Canopy (벼 군락(群落)의 생육시기별(生育時期別) 물 이용(利用) 효율(效率)에 관(關)한 연구(硏究))

  • Kim, Jung-Wook;Lee, Jeong-Taek;Kang, Byeung-Hoa;Yun, Seong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • This experiment was carried out to clarify the evapotranspiration and water use efficiency in rice plant canopy. Two rice cultivars, Daechungbyo(japonica type) and Samgangbyo(Tongil) were planted on the field of Suwon Weather Forecast Station in 1989. Evapotranspiration, dry matter production and leaf area of rice plant were measured to investigate the water use efficiency. There was significant correlation between cumulative evapotranspiration and dry matter production of aboveground. The parameter of linear regression was 4.13. The ratio of cumulative top dry matter production per cumulative evapotranspiration was increased until $5.5{\sim}5.9$ leaf area index. The de Wit's "m" value revealed maximum record at heading-flowering stage. At the harvest, the values were ranged from 175.5 to 191.7. The parameter of cumulative solar radiation to dry matter production was $1.011{\sim}1.248$. The evapotranspiration ratio(g.water/g.DW) of Samgangbyo(278) was higher than that of Daechungbyo (299.9). The efficiency of evapotranspiration(g.DW/g. water) was 1.58 in Daechungbyo and 1.98 in Samgangbyo.

  • PDF

Dry-heat Treatment Effect for Seed Longevity Prediction in Rice Germplasm (벼 유전자원의 저장수명 예측을 위한 건열처리 효과)

  • Na, Young-Wang;Baek, Hyung-Jin;Choi, Yu-Mi;Lee, Sok-Young;Lee, Jung-Ro;Chung, Jong-Wook;Park, Yong-Jin;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.230-238
    • /
    • 2014
  • The purpose of this study was to develop the cost-effective and efficiency seed longevity prediction method of rice (Oryza sativa L.) germplasm for viability monitoring. To find an optimum predicting method for rice seed longevity at genebank, an accelerated ageing (AA) test, a controlled deterioration (CD) test and a dry-heat treatment (DHT) were conducted to the four groups of rice germplasm based on ecotype, such as Indica, Japonica, Javanica and Tongil type. Among the three artificial aging treatments, the dry-heat treatment of 36 hours at $90^{\circ}C$ is suggested as a routine predictive test method of rice germplasm longevity at a genebank. The distribution of germination rate on 3,066 accessions which conserved 26.5 years at $4^{\circ}C$ showed similar trend with the result of distribution by dry-heat treatment at $90^{\circ}C$ on 36 hours using 106 accessions of rice selected samples which composed four ecotype groups. The results show that the dry-heat treatment affect not only predicting the rice seed longevity but also determining effective interval for monitoring germination of rice germplasm in genebanks.

Screening of Resistance Genes Linked to Brown Planthopper Using STS Marker in Aromatic Rice Germplasm

  • Kim, Jeong-Soon;Ahn, Sang-Nag;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung;Damodaran, P.N.;Kim, Yong-Ki;Jee, Hyeong-Jin;Shim, Chang-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • Brown planthopper (BPH) is a serious insect pest of rice crop throughout rice growing countries, and yield loss due to its infection can be up to 60%. This study aimed to evaluate efficiency of molecular markers for screening BPH resistance accessions among 86 aromatic rice germplasm Eighty-six accessions of aromatic rice germplasm included two accessions of Tongil type (bred in Korea), 28 accessions of japonica type and 56 accessions of indica type. We applied eight STS markers (pBPH9, pBPH19, pBPH20, pBPH21, AJ09-b, RG457L, RG457B, and 7312.T4A) which were linked to four of BPH resistance genes, Bph1, Bph13(t), Bph10, and Bph18(t) respectively. One japonica type accession, 415XIr352, and six indica type accessions possessed one or four positive bands when tested with four STS markers linked to Bph1 gene. One indica type aromatic rice, Basmati9-93, showed the target bands linked to the Bph10 gene. The other accessions did not show same fragments as the respective resistant lines. Bph13(t) is the most widely introduced resistance gene and only one accession showed positive bands implying that this accession might harbor Bph10 and Bph18(t) genes. Three aromatic accessions, Domsiah, Khao Dawk Mali 105 and 415XIr352 showed gene pyramiding of Bph1 and Bph13(t). Two indica aromatic rice, Ds 20 and Basmati 9-93, possessed at least two BPH resistance genes, Bph1, Bph18(t) and Bph13(t), Bph18(t), respectively. These results indicates that aromatic rice germplasm have narrow diversities of BPR resistance genes.

Influence of Nitrogen Level and Planting Density on the Leaf Characteristics of Rice(Oryza sativa L.) Cultivars (질소비료수준과 재식밀도가 벼 품종의 엽형질에 미치는 영향)

  • 이현도;빈영호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.329-335
    • /
    • 1988
  • [n order to find out the effects of nitrogen fertilizer and planting density on the leaf characteristics of high yielding cultivars of rice, Dongjin (Japonica type) and Samkang (Tongil type) were .grown under two nitrogen levels (150 and 250 kg N/ha) and three planting densities (30 ${\times}$ 15 cm, 30 ${\times}$ 12 cm, 30 ${\times}$ 9 cm. Leaf blade, sheath and dry weight of individual leaf. the number of green leaves after flowering were measured. Samkang was characterized as longer and wider leaf blade and sheath than Dongjin, less sensitive to nitrogen fertilizer and planting density, and higher proportions of green leaves after flowering. These morphological characteristics of Samkang caused an increase of grain yield by 30 per cent.

  • PDF

A New High Yielding Rice Variety with Multi-Disease Resistance, 'Keunseom' (중생 복합내병충성 초다수성 벼 '큰섬')

  • Ha, Un-Goo;Song, You-Chun;Yeo, Un-Sang;Cho, Jun-Hyeon;Lee, Jong-Hee;Lee, Ji-Yoon;Kwak, Do-Yeon;Chang, Jae-Ki;Hwang, Hung-Goo;Kim, Young-Doo;Cho, Young-Ho;Yang, Sae-Jun;Oh, Byeong-Gen;Shin, Mun-Sik;Ku, Yeon-Chung;Kim, Ho-Yeong
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.576-580
    • /
    • 2011
  • 'Keunseom', a new second generation Tongil-type rice variety (Oryza sativa L.), is a mid-maturing ecotype developed by the rice breeding team of Department of Functional Crop, NICS, RDA in 2006. This variety was originated from a cross between 'Dasanbyeo' and 'Namyeongbyeo' in 1996's summer season, which developed by pedigree breeding method. The pedigree of 'Keunseom' was YR18234-B-B-98-3-5-1, and it was designated 'Milyang202' in 2002. 'Keunseom' has tolerance to lodging, because it has short culm length as 77 cm. This variety is resistance to bacterial blight K1 race, rice stripe virus, rice dwarf virus, and leaf blast disease. Milled rice kernel of 'Keunseom' is a clean translucent with non-glutinous endosperm, and has good quality as it was clear in chalkness. The milled rice yield potential of 'Keunseom' was about 719 kg/10a at ordinary fertilizer level of local adaptability test. This cultivar would be adaptable to the mid and southern plain of Republic of Korea.

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF

Seed Longevity of Rice Germplasm in the National Agrobiodiversity Center (종자은행 보존 벼 유전자원의 생태형별 종자수명)

  • Na, Young-Wang;Choi, Yu-Mi;Baek, Hyung-Jin;Lee, Sok-Young;Kang, Jung-Hun;Kim, Seok-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • The purpose of this study was to know the seed longevity of rice (Oryza sativa L.) germplasm for effective viability monitoring. The longevity was determined via germination tests of 3,066 accessions of rice germplasm from the National Agrobiodiversity Center, Rural Development Administration, Korea. The rice germplasm accessions have been conserved at a mid-term storage ($4^{\circ}C$, 30% RH) in plastic bottle containing dehydrated (blue) silica-gel and long-term storage ($-18^{\circ}C$, 35% RH) in hermetically sealed metal can on either sides for 25~26.5 years. The final germination percentages of 3,066 rice germplasm accessions of $6.5{\pm}1.0%$ seed moisture content with 94% initial germination stored at $4^{\circ}C$ for 26.5 years declined to 47% while at $-18^{\circ}C$ for 25 years maintained high germinability as 93%. Germination time courses, which represent the average performance of rice ecotypes stored at $4^{\circ}C$ and 30% RH, were fitted regression equation, to calculate the time at which germination characteristically declined to 50% ($P_{50}$). These $P_{50}$ values of Indica, Japonica, Javanica and Tongil type in rice were 39.9, 22.9, 25.4 and 31.8 years, respectively. The rice germplasm stored at $4^{\circ}C$ could be clustered in 4 groups using quartile of final germination after 26.5 years storage. The seed longevity ($P_{50}$) of each group was estimated by regression equation of changed germination percentages according to storage periods. The $P_{50}$ values of group I, group II, group III and group IV were 21.1, 23.6, 30.0 and 75.7 years.

A Late-Maturing and Whole Crop Silage Rice Cultivar 'Mogwoo' (만생종 총체사료용 벼 신품종 '목우')

  • Lee, Sang-Bok;Yang, Chang-Ihn;Lee, Jeom-Ho;Kim, Myeong-Ki;Shin, Young-Seop;Lee, Kyu-Seong;Choi, Yong-Hwan;Jeong, O-Young;Jeon, Yong-Hee;Hong, Ha-Cheol;Kim, Yeon-Gyu;Jung, Kuk Hyun;Jeung, Ji-Ung;Kim, Junhwan;Shon, Ji-Young
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • 'Mogwoo', a new high yield and whole crop silage rice (Oryza sativa L.) cultivar, was developed by the rice breeding team of the National Institute of Crop Science, RDA, Suwon, Korea, from 1999 to 2009, and was released in 2010. It was derived in 1999 from a cross between Dasanbyeo, having a high yield, and Suweon431/IR71190-45-2-1. A promising line, SR25848-C99-1-2-1, selected by the pedigree breeding method, was designated the name of 'Suweon 519' in 2007. This cultivar has about 155 days of growth period from seeding to heading, and is tolerance to lodging, with erect pubescent leaves as well as a long and thick culm. This cultivar has the same number of tillers per hill and higher spikelet numbers per panicle compared to Nokyang. 'Mogwoo' has longer leaves compared with other Tongil-type varieties. This new variety is resistant to grain shattering, leaf blast, bacterial leaf blight, and small brown planthopper. The biomass yield of 'Mogwoo' was 1,956 kg/10a in a regional test over three years. The result shows that 'Mogwoo' is adaptable to central and south-east plain areas of Korea.