• Title/Summary/Keyword: Orthotropic plate

Search Result 266, Processing Time 0.023 seconds

Local Buckling Strength of PFRP I-Shape Compression Members Obtained by LRFD Design Method and Closed-Form Solution (하중저항계수설계법 및 정밀해법에 의한 PFRP I형 단면 압축재의 국부좌굴강도)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.

A Study of the Advanced Composite Material Slab for Light Weight of Tall Building (초고층빌딩 경량화를 위한 복합신소재 슬래브에 관한 연구)

  • Han, Bong-Koo
    • Composites Research
    • /
    • v.27 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • For each construction material used, there is certain theoretical limit in sizes. For tall building construction, the reduction in slab weight is the first step to take in order to break such size limits. In this paper, the feasibility of such objective is proven and given by numerical analysis result. For a typical building slab, both concrete and advanced composite sandwich panels are considered. The concrete slab is treated as a special orthotropic plate to obtain more accurate result. For each panel, the deflection under the dead and live loads is compared, since both tensile and compressive strengths of the composites are far more higher than those of concrete. All types of sandwich panels considered, except one case, have self-weights less than one tenth of that of the reinforced concrete slab, with deflections less than that of the reinforced concrete slab.

The Effect of Neglecting the Longitudinal Moment Terms in Analyzing Laminates with Increasing Aspect Ratio (적층판 해석시 형상비 증가에 따른 종방향 모멘트의 무시효과)

  • Han, Bong Koo;Kim, Duk Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • Theories for advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. For such plates the fiber orientations given above behave as specially orthotropic plates and simple formulas developed by the senior author. Most of the bidge and building slabs on girders have large aspect ratios For such cases frurther simplification is possible by neglecting the effect of the longitudinal moment terms(Mx) on the relevant partial differential equationsof equilibrium In this paper, the result of the study on the subject problem is presented.

  • PDF

Delamination Analysis of Orthotropic Laminated Plates Using Moving Nodal Modes (이동절점모드를 사용한 직교이방성 적층평판의 층간분리해석)

  • Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2012
  • In this study, the delamination analysis has been implemented to investigate the initiation and propagation of crack in composite laminates composed of orthotropic materials. A simple modeling was achieved by moving nodal technique without re-meshing work when crack propagation occurred. This paper aims at achieving two specific objectives. The first is to suggest a very simple modeling scheme compared with those applied to conventional h-FEM based models. To verify the performance of the proposed model, analysis of double cantilever beams with composite materials was implemented and then the results were compared with reference values in literatures. The second one is to investigate the behavior of interior delamination problems using the proposed model. To complete these objectives, the full-discrete-layer model based on Lobatto shape functions was considered and energy release rates were calculated using three-dimensional VCCT(virtual crack closure technique) based on linear elastic fracture mechanics.

Size Effects in the Failure of Simple Supported Sandwich Slab Bridges (단순지지된 샌드위치 슬래브교량의 파괴시 치수효과)

  • Han, Bong-Koo;Kim, Duck-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • Composite materials can be used economically and efficiently in civil engineering applications when standards and procedure for analysis, design, construction and quality control are to be established. Bridge systems, including the girders and cross-beams, and concrete decks behave as the specially orthotropic plates. For such systems with sections, boundary conditions other than Navier solution types, it is very difficult to obtain its analytical solution. To design the bridge made by the composite materials, cross-section was used as the form-core shape for economical reason and finite difference method was used for output of the stress value. The Tsai-Wu failure criterion for stress space is used. In this paper, the rate of tensile strength reduction due to increased size was considered. And also numerical study is made for these cases.

Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression (폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과)

  • Hwang, Su-Hee;Kim, Yu-Sik;Choi, Byung-Ho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.2
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.

A Study on the Design Bending Moments of Long Span Decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 설계휨모멘트에 관한 연구)

  • Chung, Chulhun;Lee, Hanjoo;Joo, Sanghoon;An, Hohyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.375-384
    • /
    • 2016
  • In the current Korea highway bridge design code (KHBDC), the criteria of concrete bridge decks are mainly based on short span decks of steel plate girder bridge, there are very little the specific criteria of long span decks in the twin steel plate girder bridge. Therefore, to put more rational and practical design criteria of the long span decks on the code, the complements of the related criteria are required in the current design code. This paper proposed the design bending moments of decks with 6.0~12.0m span for KL-510 load in direction to bridge (longitudinal direction) and perpendicular direction to bridge (transverse direction). The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments were compared to the design bending moments with DB-24 load.

A Numerical Study for Deformation Characteristics of the Wearing Surface on a Steel Plate Deck under Wheel Loads (윤하중을 받는 강바닥판 교면포장의 변형특성에 대한 수치해석적 연구)

  • Kim, Hae-Na-Rae;Ock, Chang-Kwon;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.439-447
    • /
    • 2011
  • Longitudinal cracks due to traffic truck loadings that are caused by local deformations of steel orthotropic bridge decks are sometimes observed in the wearing surface. So, underlying causes of the longitudinal pavement crack induced by structural behaviors of steel decks are investigated in this study. For this purpose, The rational finite element model of the steel deck and the pavement having the box girder is developed and a parametric study is performed by varying thickness or elastic modulus ratios of both the steel deck plate and the pavement. As a result, a large tensile strain above the webs of the u-rib and the box girder, which becomes the main cause of the cracks of the pavement, is detected from variation of the normal strain component of the wearing surface in the transverse direction.

Investigation of wave propagation in anisotropic plates via quasi 3D HSDT

  • Bouanati, Soumia;Benrahou, Kouider Halim;Atmane, Hassen Ait;Yahia, Sihame Ait;Bernard, Fabrice;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.85-96
    • /
    • 2019
  • A free vibration analysis and wave propagation of triclinic and orthotropic plate has been presented in this work using an efficient quasi 3D shear deformation theory. The novelty of this paper is to introducing this theory to minimize the number of unknowns which is three; instead four in other researches, to studying bulk waves in anisotropic plates, other than it can model plates with great thickness ratio, also. Another advantage of this theory is to permits us to show the effect of both bending and shear components and this is carried out by dividing the transverse displacement into the bending and shear parts. Hamilton's equations are a very potent formulation of the equations of analytic mechanics; it is used for the development of wave propagation equations in the anisotropic plates. The analytical dispersion relationship of this type of plate is obtained by solving an eigenvalue problem. The accuracy of the present model is verified by confronting our results with those available in open literature for anisotropic plates. Moreover Numerical examples are given to show the effects of wave number and thickness on free vibration and wave propagation in anisotropic plates.

A study on the fatigue bending strength of quasi-isotropic CFRP laminates subjected to impact damage (축격손상을 받은 의사등방성 탄소섬유강화 복합재의 굽힘피로강도)

  • Park, Soo-Chul;Park, Seol-Hyeon;Jung, Jong-An;Cha, Cheon-Seok;Yang, Yong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.688-695
    • /
    • 2017
  • Compared to metal, CFRP has excellent mechanical characteristics in terms of intensity, hardness, and heat resistance as well as its light weight that it is used widely in various fields. Therefore, this material has been used recently in the aerospace field. On the other hand, the material has shortcomings in terms of its extreme vulnerability to damage occurring internally from an external impact. This study examined the intensity up to its destruction from repeated use with the internal impact of a CFRP laminated plate that had also been exposed to external impact obtain design data for the external plate of aircraft used in the aerospace field. For the experimental method, regarding the quasi-isotopic type CFRP specimen and orthotropic CFRP specimen that are produced with a different layer structure, steel spheres with a diameter of 5 mm were collided to observe the resulting impact damage. Through a 3-point flexural fatigue experiment, the progress of internal layer separation and impact damage was observed. Measurements of the flexural fatigue strength after the flexural fatigue experiment until internal damage occurs and the surface impacted by the steel spheres revealed the quasi-isotopic layer structure to have a higher intensity for both cases.