• Title/Summary/Keyword: Orthotropic plate

Search Result 266, Processing Time 0.022 seconds

The Effect on Neglecting the Longitudinal Moment Terms in a Composite Liminate Plate with Stacking Sequence and Fiber Orientation (적층형태 및 보강방향에 따른 복합적층판의 종방향 모멘트 무시효과)

  • Lee, Bong-hak;Lee, Jung-ho;Hong, Chang-Woo;Kim, Kyung-Jin
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.97-105
    • /
    • 1998
  • The most of the design engineers for construction has academic background of bachelors degree. Theories for advanced composite structures are too difficult for such engineers and some simple but accurate enough methods are necessary. The senior author has reported that some laminate orientations have decreasing values of $D_{16}$, $B_{16}$, $D_{26}$ and $B_{26}$ stiffnesses as the ply number increases. Such plates behave as special orthotropic plates and simple formulas developed by the author can be used. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper, the result of the study on the subject problem is presented.

  • PDF

Guided viscoelastic wave in circumferential direction of orthotropic cylindrical curved plates

  • Yu, Jiangong;Ma, Zhijuan
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.605-615
    • /
    • 2012
  • In this paper, guided circumferential wave propagating in an orthotropic viscoelastic cylindrical curved plate subjected to traction-free conditions is investigated in the frame of the Kelvin-Voight viscoelastic theory. The obtained three wave equations are decoupled into two groups, Lamb-like wave and SH wave. They are separately solved by the Legendre polynomial series approach. The availability of the method is confirmed through the comparison with the published data of the SH wave for a viscoelastic flat plate. The dispersion curves and attenuation curves for the carbon fiber and prepreg cylindrical plates are illustrated and the viscous effect on dispersion curves is shown. The influences of the ratio of radius to thickness are analyzed.

Numerical Experiment for a Strain Energy Equivalence Principle (SEEP)-based Continuum Damage Model (탄성변형에너지 등가원리 기반 연속체 손상모델에 대한 수치실험)

  • Youn, Deok-Ki;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.31-34
    • /
    • 2006
  • A new continuum damage theory (CDT) has been proposed by Lee et al. (1996) based on the SEEP. The CDT has the apparent advantage over the other related theories because the complete constitutive law can be readily derived by simply replacing the virgin elastic stiffness with the effective orthotropic elastic stiffness obtained by using the proposed continuum damage theory. In this paper, the CDT is evaluated by the numerical experiment comparing the mode shapes and natural frequencies of a square plate containing a small line-through crack with those of the same plate with a damaged site replaced with the effective orthotropic elastic stiffness computed by using the CDT.

  • PDF

A Efficient Vibration Analysis Method for the Cooncrete-Steel Deck Slab (콘크리트와 강제데크의 합성 바닥판의 실용적인 진동해석 방법)

  • Kim, Gee-Cheol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.91-100
    • /
    • 2005
  • Composite slab structures consisted with steel deck plate and concrete material show generally anisotropic structural behavior because of different stiffness between the major direction and sub-direction of deck plate, and also the structures can be regarded as the laminated slab structures. It is necessary for the composite deck slab structures to carry out the exact vibration analysis to evaluate the serviceability. Also, it is needed to evaluate the exact structural behavior of composite deck slab with a layered orthotropic materials. In this paper, the thickness of topping concrete and deck plate are used to calculate the material coefficient stiffness of a sub-direction, and an equivalent depth calculated from sectional stiffness of concrete and deck plate is applied to get the stiffness of a major direction. The stiffness of two layered composite plates with different depth is determined by laminated theory. It is concluded that the presented method can efficiently analyze the structural behavior of composite deck slab consisted with steel deck plate and concrete material in the practical engineering field.

  • PDF

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates (특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong Koo;Kim, Duck Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.219-225
    • /
    • 2011
  • Advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The simply supported laminated plates are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. The plate aspect ratio considered is from 1 : 1 to 1 : 5. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the specially orthotropic laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes. The result of this paper can be used for simply supported laminated plates analysis.

Buckling Analysis of Stiffened Plates (보강판(補剛板)의 좌굴해석(挫屈解析))

  • S.J.,Yim;P.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-6
    • /
    • 1981
  • The buckling of stiffened plates is considered using a finite element method. In this paper stiffened plates are treated as orthotropic plates and by appling Mindlin's plate theory the effects of shear deformation to buckling loads are considered. In general, it is found that for moderately thick plates Mindlin's plate theory gives lower buckling load than those obtained using classical thin plate theory.

  • PDF

Effect of element size in hybrid stress analysis around a hole in loaded orthotropic composites (직교이방성 재료의 구멍주위에 관한 하이브리드 응력해석시 요소크기의 효과)

  • Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1702-1711
    • /
    • 1997
  • A numerical study for the number of terms of a power series stress function and the effect of hybrid element size on stress analysis around a hole in loaded orthotropic composites is presented. The hybrid method coupling experimental and/or theoretical inputs and complex variable formulations involving conformal mappings and analytical continuity is used to calculate tangential stress on the boundary of the hole in uniaxially loaded, finite width glass epoxy tensile plate. The tests are done by rarying the number of terms, element size and nodal locations on the external boundary of the hybrid region. The numerical results indicate that the hybrid method is accurate and powerful in both experimental and numerical stress analysis.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.