• 제목/요약/키워드: Orthotropic Plate Element

검색결과 80건 처리시간 0.024초

벌크헤드 플레이트가 부착된 강바닥판교의 피로상세 개선 연구 (A Study on Improvement of fatigue Details in Orthotropic Steel Deck Bridge with Bulkhead Plate)

  • 공병승
    • 한국해양공학회지
    • /
    • 제18권1호
    • /
    • pp.22-27
    • /
    • 2004
  • An orthotropic steel deck system is widely adapted form for a long-span bridge. It has many advantages, such as the big reduction of dead weight, the simplicity for erection, and the reduction of the construction period. However, an orthotropic steel deck system requires a lot of welding work, which may result in defects and deformation of connection. Therefore, the research for the general behavior and fatigue strength of the several details in orthotropic steel deck bridge is necessary. The fatigue failure with distortion results from secondary stress by out-of-plane deformation; these kinds of cracks are very difficult to measure, and can not be precisely calculated through finite element analysis. This stress concentration phenomenon generates the fatigue failure around the lower scallop of the transverse rib. This paper presents improved details of the intersection between the longitudinal rib and the transverse rib of an orthotropic steel deck bridge by the third dimensional hit size test, and the finite element method, which can minimize local stress through parametric study.

직교 이방성 관통 다공 후판의 탄성 해석 (Elastic Analysis of Orthotropic Thick Plates with Perforated Many Holes)

  • 김우식;권택진
    • 한국공간구조학회논문집
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 2002
  • The structures with many perforated openings are widely used as a load-carrying element in the fields of civil engineering works, top slab of prestressed concrete reactor vessel, petrochemical industries and the like. Perforated concrete plates are usually thick. Therefore, the effect of transverse shear deformation is not negligible. This paper describes a new analytical method of perforated plates combining both the finite element method for effective elastic constants and the usual method in solving orthotropic plate with transverse shear deformation.

  • PDF

Numerical experiments on the determination of stress concentration factors in orthotropic perforated plates subjected to in - plane loading

  • Bambill, D.V.;Rossit, C.A.;Susca, A.
    • Structural Engineering and Mechanics
    • /
    • 제32권4호
    • /
    • pp.549-561
    • /
    • 2009
  • As it is known, laminated composite materials are increasingly used in many technological applications, and in some instance, cutouts must be made into laminated panels for practical reasons, changing the stress distribution. The present study deals with the determination of the stress concentration factor that holes of square shape cause in an orthotropic plate subjected to distributed in - plane loading. Square holes of rounded corners in a rectangular plate are considered, and the effect of different combinations of axial and tangential forces applied to its middle plane at the external edges, is studied. The mutually perpendicular axes, which define the principal axes of orthotropy, are assumed in many different directions referred to the sides of the plate. Numerical experiments by means of a finite element code is performed, evaluating the influence of the fiber orientation with respect to the edges of the plate and the characteristics of the orthotropic materials since such structures do not exhibit easily predictable behavior.

연단보강된 직교이방성 Channel 단면 압축재의 탄성국부좌굴 (Elastic Local Buckling for Orthotropic Channel Section Compression Members with Edge Stiffeners)

  • 최원창;정상균;윤순종
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.91-94
    • /
    • 2001
  • This paper presents the analytical investigation pertaining to the local buckling behavior of orthotropic channel section compression members stiffened with unsymmetric stiffeners at its free edges. In the analysis, tile edge stiffener is modeled as a beam element or a plate element. The result of both cases is presented in graphical form so that the effects of edge stiffeners on the local buckling strength of edge stiffened channel section member can be found.

  • PDF

Mindlin판 특성함수를 이용한 직교이방성 후판의 진동해석 (Vibration Analysis of Thick Orthotropic Plates Using Mindlin Plate Characteristic Functions)

  • 이종문
    • 한국해양공학회지
    • /
    • 제17권3호
    • /
    • pp.21-26
    • /
    • 2003
  • An iteractive Kantorovich method is presented for the vibration analysis of rectangular orthotropic thick plates. Mindlin plate characteristic functions are derived in general forms using the Kantorovich method. Initially, Timoshenko beam functions consistent with the boundary conditions of the plate were used. Through numerical calculations of natural fairs of appropriate models, it has been confirmed that the method presented is superior to the Rayleigh-Ritz analysis or the finite element analysis in both accuracy and computational efficiency.

개단면 리브를 갖는 보강판의 직교이방성 판 해석 (The Orthotropic Plate Analysis of Stiffened Plataes with Open Ribs)

  • 주석범;김창수
    • 한국강구조학회 논문집
    • /
    • 제14권6호
    • /
    • pp.701-710
    • /
    • 2002
  • 본 연구에서는 개단면 리브를 갖는 보강판이 직교이방성 특성을 고려한 직교이방성 판 요소 프로그램을 개발하고, 여러가지 보강판에 대한 민감도 분석 및 매개변수 연구를 통하여 보강판의 직교이방성 거동 특성 및 본 프로그램의 적용성을 살펴보았다. 먼저 보강재만의 관성 모멘트를 강판만의 관성 모멘트로 나눈 값을 관성 모멘트 비라 정의하고, 여러가지 보강판에 대한 민감도 분석을 실시하였다. 보강판의 직교이방성 거동을 규명하였다. 본 프로그램의 적용성을 살펴보기 위하여, 여러가지 보강판에 대한 매개변수 연구를 수행하고, 최대 처짐에 대한 결과를 등팡성 판 요소를 이용한 ABAQUS의 결과와 비교하였다. 비교 결과, 두 결과가 잘 일치하는 특정 모멘트 비를 직교이방성 판으로 해석할 수 있는 기준으로 제안하였으며, 두 결과 사이의 오차율을 관성 모멘트 비의 함수 식으로 표현하였다. 따라서, 개단면 리브로 보강된 판을 직교이방성 판으로 해석하기 위해서는 제안한 특정 관성 모멘트 비 이상의 값을 가져야 안전측의 결과를 얻으며, 또한 본 연구에서 제안한 상관 함수를 이용하여 결과를 보정하면 간편하게 타당한 결과를 얻을 수 있을 것으로 사료된다.

벌크헤드 플레이트로 보강된 강바닥판교의 종리브-횡리브 교차연결부의 최적상세 연구 (A Study for The Optimal Detail on Intersectin of Longitudinal-Transversal Rib in Orthotropic Steel Deck Bridge, Bulkhead Plate Reinforced.)

  • 공병승;윤성운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.177-184
    • /
    • 2004
  • Orthotropic steel deck bridge has much advantages such as the light deadweight, so the construction of orthotropic steel deck is profitable for the long-span bridges Although the system has a lot of merits, it happens some damages by the traffic density and the fatigue cracks of welding. The cross-connection of longitudinal rib and transversal rib is one of the weakest at the fatigue. The secondary stresses which are from the out-plane deformation of transversal rib and the torsion of longitudinal rib make the topical stress concentration phenomenon. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This study with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and the cross-connection area of longitudinal and transversal rib

  • PDF

강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구 (A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge)

  • 공병승;김진만
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF

A BEM implementation for 2D problems in plane orthotropic elasticity

  • Kadioglu, N.;Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • 제26권5호
    • /
    • pp.591-615
    • /
    • 2007
  • An improvement is introduced to solve the plane problems of linear elasticity by reciprocal theorem for orthotropic materials. This method gives an integral equation with complex kernels which will be solved numerically. An artificial boundary is defined to eliminate the singularities and also an algorithm is introduced to calculate multi-valued complex functions which belonged to the kernels of the integral equation. The chosen sample problem is a plate, having a circular or elliptical hole, stretched by the forces parallel to one of the principal directions of the material. Results are compatible with the solutions given by Lekhnitskii for an infinite plane. Five different orthotropic materials are considered. Stress distributions have been calculated inside and on the boundary. There is no boundary layer effect. For comparison, some sample problems are also solved by finite element method and to check the accuracy of the presented method, two sample problems are also solved for infinite plate.

직교이방성 판 내의 다중 곡선균열 해석 (Analysis of Multiple Curved Cracks in An Orthotropic Plate)

  • 김만원;박재학
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.969-980
    • /
    • 2003
  • The interactions between curved cracks are examined in an orthotropic plate and the effects of rectilinear anisotropy on the stress intensity factors are analyzed. The finite element alternating method (FEAM) is used in this study to get the stress intensity factors for the multiple curved cracks. To obtain analytical solutions, which is necessary in FEAM, the curved cracks are modeled as continuous distributions of dislocations, and integral equations are formulated for unknown dislocation density functions to satisfy the given resultant forces on the crack surfaces. Several basic problems are solved to verify the accuracy and efficiency of the proposed method and it can be found that present results show good agreements with the previously published results.