• Title/Summary/Keyword: Orthogonal space-time coding

Search Result 70, Processing Time 0.027 seconds

Noncoherent Detection of Orthogonal Modulation Combined with Alamouti Space-Time Coding

  • Simon, Marvin K.;Wang, Ji-Bing
    • Journal of Communications and Networks
    • /
    • v.5 no.2
    • /
    • pp.124-134
    • /
    • 2003
  • In this paper, we investigate the error probability performance of noncoherently detected orthogonal modulation combined with Alamouti space-time block coding. We find that there are two types of pair-wise error probabilities that characterize the performance. We employ methods that allow a direct evaluation of exact, closed-form expressions for these error probabilities. Theoretical as well as numerical results show that noncoherent orthogonal modulation combined with space-time block coding (STBC) achieves full spatial diversity. We derive an expression for approximate average bit error probability for-ary orthogonal signaling that allows one to show the tradeoff between increased rate and performance degradation.

Alternate Time-Switched Multiplexed Space-Time Block Coding technique for OFDM systems (OFDM 시스템에 적용가능한 교번 스위칭하는 다중화 시공간 블록 코딩 기법)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.136-141
    • /
    • 2016
  • This paper proposes an alternate time-switched multiplexed space-time block coding technique for orthogonal frequency division modulation systems. The traditional multiplexed space-time block coding technique can provide more data rate owing to multiple transmit and receive technique, which causes a lot of hardware burden. Alternate time-switched scheme of transmitting time-domain zeros can reduce this hardware burden by half with time-domain switches only. Simulation results show that alternate time-switched scheme has almost same performance with half of baseband and RF modules in comparison with a multiplexed space-time block coding for orthogonal frequency division modulation systems with twice repetitive transmission.

Quasi-Orthogonal STBC with Iterative Decoding in Bit Interleaved Coded Modulation

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.426-433
    • /
    • 2008
  • In this paper, we present a method to improve the performance of the four transmit antenna quasi-orthogonal space-time block code (STBC) in the coded system. For the four transmit antenna case, the quasi-orthogonal STBC consists of two symbol groups which are orthogonal to each other, but intra group symbols are not. In uncoded system with the matched filter detection, constellation rotation can improve the performance. However, in coded systems, its gain is absorbed by the coding gain especially for lower rate code. We propose an iterative decoding method to improve the performance of quasi-orthogonal codes in coded systems. With conventional quasi-orthogonal STBC detection, the joint ML detection can be improved by iterative processing between the demapper and the decoder. Simulation results shows that the performance improvement is about 2dB at 1% frame error rate.

Co-channel Interference Mitigation using Orthogonal Transmission Scheme for Cooperative Communication System with Decode-and-Forward Relays (복조후 전송 중계기를 이용한 협력통신 시스템에서 직교 전송 개념을 이용한 동일 채널 간섭 완화)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • In this paper, we analyze and simulate co-channel interference (CCI) mitigation method for cooperative communication systems employing decode-and-forward relays. In co-channel interference mitigation method, A source transmits signals that are encoded by orthogonal code. Then, the receiver can distinguish its own signals form the received signals by using the orthogonal code which is already known to the receiver. The orthogonal codes applied to this paper are orthogonal Gold codes. However, we can employ other codes, which have orthogonality, as the orthogonal code. In addition, we utilize a space time block coding (STBC) scheme for enhancing the system performance by obtaining additional array gain.

Channel Estimation scheme for IEEE 802.11a system based on MIMO-OFDM systems (IEEE 802.11a 기반의 MIMO-OFDM 시스템을 위한 채널 추정 기법)

  • 안치준;안재민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.640-650
    • /
    • 2004
  • Channel estimation schemes are proposed for Multiple Input-Multiple output Orthogonal Frequency Division Multiplexing(MIMO-OFDM) systems based on the physical layer specification of the IEEE 802.1 la. By combining the space-time block coding(STBC)/ space-frequency block coding(SFBC) techniques with the transform domain interpolation, the proposed algorithms achieve more accurate channel coefficients for the MIMO channels such that improve the BER performance. The performance improvements of the proposed algorithms are evaluated by simulations under the various multipath fading channel environments and various transmission rates.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Hybrid Algorithm of Space Time and Space Frequency Block Coding Technique using Alternate Time Switch (교번 스위치를 활용한 시공간 및 주파수공간 블록 코딩의 하이브리드 알고리즘)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • This paper proposes a hybrid algorithm of space-time block coding and space-frequency block coding using alternate time switch. The traditional alternate time-switched space-time or space-frequency block coding technique for orthogonal frequency division multiplexing system does not provide a good performance with a variety of communication environments. This hybrid algorithm has searched good performance ranges in various environments in view points of mobile speed and doppler frequency. In this paper, we investigate better performance ranges for two algorithms, suggest a hybrid algorithm for dynamically changing communication environments, propose a structure for transmitter and receiver, and show that its performance is better than the traditional algorithm by simulations.

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.

OFDM-Based STBC with Low End-to-End Delay for Full-Duplex Asynchronous Cooperative Systems

  • Jiang, Hua;Xing, Xianglei;Zhao, Kanglian;Du, Sidan
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.710-713
    • /
    • 2013
  • We propose a new space-time block coding (STBC) for asynchronous cooperative systems in full-duplex mode. The orthogonal frequency division multiplexing (OFDM) transmission technique is used to combat the timing errors from the relay nodes. At the relay nodes, only one OFDM time slot is required to delay for a pair-wise symbol swap operation. The decoding complexity is lower for this new STBC than for the traditional quasi-orthogonal STBC. Simulation results show that the proposed scheme achieves excellent performances.

Improved Blind Cyclic Algorithm for Detection of Orthogonal Space-Time Block Codes

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.136-140
    • /
    • 2006
  • In this paper, we consider the detection of orthogonal space-time block codes (OSTBCs) without channel state information (CSI) at the receiver. Based on the conventional blind cyclic decoder, we propose an enhanced blind cyclic decoder which has higher system performance than the conventional one. Furthermore, the proposed decoder offers low complexity since it does not require the computation of singular value decomposition.