• 제목/요약/키워드: Orthogonal frequency-division multiplexing

Search Result 848, Processing Time 0.022 seconds

Experimental Demonstration of Micro LED-to-LED Visible Light Communications (Micro LED-to-LED 무선 가시광 통신의 실험적 증명)

  • Kwon, Dong-Yoon;Kim, Sung-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.219-226
    • /
    • 2021
  • LED-to-LED VLC is a technology that uses LEDs as both a transmitter and a receiver unlike the typical VLCs. In this paper, we experimentally demonstrate a micro LED-to-LED VLC using Micro LED. We tested all the possible VLC cases using red, yellow, green, blue, and white color LED as both a transmitter and a receiver, and measured rise time and SNR. Then we calculated channel capacity depending on the LED color sets. Our experimental results show that the best channel capacity is 125 kbps when the transmitter micro LED was blue and the receiver LED was green. We also measured BERs of VLCs using OFDM signal, and we showed a successful micro LED-to-LED VLC upto 250 kbps.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

A study of Development of Transmission Systems for Terrestrial Single Channel Fixed 4K UHD & Mobile HD Convergence Broadcasting by Employing FEF (Future Extension Frame) Multiplexing Technique (FEF (Future Extension Frame) 다중화 기법을 이용한 지상파 단일 채널 고정 4K UHD & 이동 HD 융합방송 전송시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.310-339
    • /
    • 2015
  • In this paper, the possibility of a terrestrial fixed 4K UHD (Ultra High Definition) and mobile HD (High Definition) convergence broadcasting service through a single channel employing the FEF (Future Extension Frame) multiplexing technique in DVB (Digital Video Broadcasting)-T2 (Second Generation Terrestrial) systems is examined. The performance of such a service is also investigated. FEF multiplexing technology can be used to adjust the FFT (fast Fourier transform) and CP (cyclic prefix) size for each layer, whereas M-PLP (Multiple-Physical Layer Pipe) multiplexing technology in DVB-T2 systems cannot. The convergence broadcasting service scenario, which can provide fixed 4K UHD and mobile HD broadcasting through a single terrestrial channel, is described, and transmission requirements of the SHVC (Scalable High Efficiency Video Coding) technique are predicted. A convergence broadcasting transmission system structure is described by employing FEF and transmission technologies in DVB-T2 systems. Optimized transmission parameters are drawn to transmit 4K UHD and HD convergence broadcasting by employing a convergence broadcasting transmission structure, and the reception performance of the optimized transmission parameters under AWGN (additive white Gaussian noise), static Brazil-D, and time-varying TU (Typical Urban)-6 channels is examined using computer simulations to find the TOV (threshold of visibility). From the results, for the 6 and 8 MHz bandwidths, reliable reception of both fixed 4K UHD and mobile HD layer data can be achieved under a static fixed and very fast fading multipath channel.

The Performance Analysis of Equalizer for Next Generation W-LAN with OFDM System (OFDM 방식의 차세대 무선 LAN 환경에서 등화기의 성능 분석)

  • Han, Kyung-Su;Youn, Hee-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper describes the performance evaluation and analysis of an Orthogonal Frequency-Division Multiplexing (OFDM) system having the least Inter Symbol Interference (ISI) in a multi-path fading channel environment. Wireless Local Area Network (W-LAN) in accordance with IEEE 802.11a and IEEE 802.11b provides high-speed transmission to universities, businesses and other various places. In addition, service providers can offer a public W-LAN service on restricted areas such as a subway. The proliferation of W-LAN has led to greater W-LAN service demands, but problems are also on the rise in offering a good W-LAN service. In particular, urban areas with high radio wave interference and many buildings are vulnerable to deteriorated QoS including disconnected data and errors. For example, when high-speed data is transmitted in such areas, the relatively high frequency generates ISI between Access Points (AP) and Mobile Terminals (such as a notebook computer), leading to a frequency selective fading channel environment. Consequently, it is difficult to expect a goodW-LAN service. The simulation proves that the OFDM system enables W-LAN to implement QoS in high-speed data transmission in a multi-path fading channel environment. The enhanced OFDM performance with 52 sub-carriers is verified via data modulation methods such as BPSK, QPSK and 16QAM based on IEEE 802.11a and punched convolutional codes with code rate of 1/2 and 3/4 and constraint length of 7. Especially, the simulation finds that the OFDM system has better performance and there is no data disconnection even in a mobile environment by applying a single tap equalizer and a decision feedback equalizer to a mobile channel environment with heavy fading influence. Given the above result, the OFDM system is an ideal solution to guarantee QoS of the W-LAN service in a high-speed mobile environment.

  • PDF

Low-power FFT/IFFT Processor for Wireless LAN Modem (무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계)

  • Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1263-1270
    • /
    • 2004
  • A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.

A Comparison of Symbol Error Performance for SC-FDE and OFDM Transmission Systems in Modeled Underwater Acoustic Communication Channel (모델링된 수중음향 채널환경에서 SC-FDE와 OFDM 전송방식의 심볼오율 비교)

  • Hwang, Ho-Seon;Park, Gyu-Tae;Joo, Jae-Hoon;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Underwater acoustic communication can be applied to various area such as scientific, commercial and military survey using Autonomous Underwater Vehicles and Unmanned Underwater Vehicles. Underwater communication is studying very actively by advanced country like United States. But differ from wireless communication in the air, underwater acoustic communication has some difficult problems, ISI(Inter Symbol Interference) due to multipath and limit of transmission bandwidth due to slow propagation of sound wave. In this paper, SC-FDE and OFDM transmission system for the cancellation of ISI in conjunction with underwater acoustic channel modeling are applied to the underwater simulation of communication. The performance of these methods in the simulation guide to possibility of adopting in underwater acoustic communication algorithm. For this purpose, we compare SER performance of SC-FDE with that of OFDM for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show above 5dB SNR gain at 10-3 SER. And it demonstrate SC-FDE is efficient method for underwater acoustic communication.

In-Band Full-Duplex Wireless Communication Using USRP (USRP 장치를 이용한 동일대역 전이중 무선통신 연구)

  • Park, Haeun;Yoon, Jiyong;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.229-235
    • /
    • 2019
  • The implementation of an in-band full-duplex wireless communication system is demonstrated in this study. In the analog/RF domain, the self-interference(SI) signal is reduced using a separate antenna for the transmitter and receiver paths, and most of the SI signal is canceled in the digital domain. A software defined radio(SDR) is used to implement the in-band full-duplex wireless communication system. The USRP X310 device uses transmitting and receiving antennas. By adjusting the gain of the transmitting and receiving ends of the SDR device, the magnitude of the SI signal entering the receiving antenna, and the size of the received signal from the outside, are both set to -64 dB. To verify the in-band full-duplex wireless communication performance, the source data is image and orthogonal frequency-division multiplexing is used for modulation. A WiFi standard frame with a carrier frequency of 2.67 GHz and bandwidth of 20 MHz is used. In the received signal, the SI signal is canceled by digital signal processing and the SI signal is attenuated by up to 34 dB. OFDM demodulation was impossible when the SI signal was not removed. However, the bit error rate is reduced to $2.63{\times}10^{-5}$ when the SI signal is attenuated by 34 dB, and no error is detected in the 100 Mbit data output as a result of passing through the Viterbi decoder.

A Study on Polynomial Pre-Distortion Technique Using PAPR Reduction Method in the Next Generation Mobile Communication System (차세대 이동통신 시스템에 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Kim, Wan-Tae;Park, Ki-Sik;Cho, Sung-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.684-690
    • /
    • 2010
  • Recently, the NG(Next Generation) system is studied for supporting convergence of various services and multi mode of single terminal. And a demand of user for taking the various services is getting increased, for supporting these services, many systems being able to transmit a large message have been appeared. In the NG system, it has to be supporting the CDMA and WCDMA besides the tele communication systems using OFDM method with single terminal An intergrated system can be improved with adopting of SoC technique. For adopting SoC technique on the intergrated terminal, we have to solve the non linear problem of HPA(High Power Amplifier). Nonlinear characteristic of HPA distorts both amplitude and phase of transmit signal, this distortion cause deep adjacent channel interference. We adopt a polynomial pre-distortion technique for this problem. In this paper, a noble modem design for NG mobile communication service and a method using polynomial pre-distorter with PAPR technique for counterbalancing nonlinear characteristic of the HPA are proposed.