• Title/Summary/Keyword: Orthogonal frequency-division multiplexing

Search Result 848, Processing Time 0.025 seconds

Improved OFDM System with Carrier Interferometry Codes in Highly Dispersive Fading Channels (높은 지연 페이딩 채널에서 반송파 간섭신호를 이용한 개선된 OFDM 시스템)

  • Chung, Yeon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.378-383
    • /
    • 2004
  • Orthogonal Frequency Division Multiplexing (OFDM) transmits high-speed data by splitting the transmission bandwidth into a number of subcarriers. The bandwidth of each subcarrier is ensured to be smaller than the coherence bandwidth. This paper presents an OFDM system incorporated with the Carrier Interferometry (CI) codes to improve the performance by enhancing frequency diversity effect. The performances of CI-OFDM with multilevel modulations are investigated in highly dispersive fading channels. For the investigation of performance improvement of CI-OFDM, a simulator has been developed using a well-known SPW simulation platform. The simulation results show that the CI-OFDM provides both performance improvement and robustness against dispersive fading channel behavior. The performance of CI-OFBM with multilevel modulations demonstrates that CI-OFDM outperforms a traditional OFDM system, particularly in highly dispersive channels. With a relatively large delay spread of 151㎱ compared to the guard interval of 800㎱, CI-OFDM provides a BER of 10$^{-3}$ if sufficient signal power is present.

PAPR Reduction Technique and BER Performance Improvement in OFDM-based Wireless Visible Light Communication (OFDM을 사용하는 무선 가시 광통신에서의 PAPR 저감 기법과 BER성능 개선)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.189-197
    • /
    • 2011
  • OFDM systems are much studied for the recent high speed wireless optical communication system. OFDM system has basically high PAPR and ICI easily generated because of non-linearity and RF impairments. In the wireless optical communication system, optical output power driven by current of LED is not linear so that transmission signals are distorted. Therefore, research about reception performance of this nonlinear optical output emitted by non-linear LED transfer function and OFDM signal has been conducted. Nonlinear effect of LED is different from nonlinear effect of OFDM system in the conventional radio communication system, which degrades the BER performance. In this paper, we apply non-linear transfer function of recently studied LED into OFDM system. So, for reducing the PAPR and suppressing the ICI in frequency domain of receiver, we suggest a new PAPR reduction technique to reduce non-linear distortion of LED and an adaptive ICI suppression algorithm so that BER performance may be improved. Also, the proposed method is verified through simulation results.

Efficient Modulation for the Last Symbol in OFDM Systems (OFDM 시스템의 마지막 심볼을 위한 효율적인 변조 방식)

  • Yu, Heejung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.513-519
    • /
    • 2018
  • OFDM modulation has been used for a transmission scheme in 4G LTE (Long Term Evolution) and Wi-Fi systems to mitigate the effects of frequency selective fading channels. An OFDM modulation is a block transmission scheme because an OFDM symbol consists of multiple subcarriers with narrow bandwidth. Therefore, all OFDM symbols in a frame should be filled out with data and padding bits. Depending on the amount of data, more padding bits than information bits can occupy the last OFDM symbol. Such inefficiency causes the loss of throughput. To overcome this problem, an efficiency padding method is proposed by using the property of DFT (Discrete Fourier Transform). In the proposed method, symbol duration of the last symbol is changed depending on the number used data subcarriers in the last symbol. With numerical evaluation, it is examined that throughput enhancement achieved by the proposed method can be about 20% depending a transmission scheme and data length.

A Cell Search with Reduced Complexity in a Mobile Station of OFCDM Systems (OFCDM 시스템의 이동국에서의 복잡도 감소 셀 탐색)

  • Kim, Dae-Yong;Park, Yong-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.139-149
    • /
    • 2007
  • Asynchronous OFCDM(Orthogonal Frequency and Code Division Multiplexing) systems must have a cell search process necessarily unlike synch개nous systems. this process is hewn initial synchronization and a three-step cell search algorithm is performed for the initial synchronization in the following three steps: OFCDM symbol timing, i.e., Fast Fourier Transform(FFT) window timing is estimated employing guard interval (GI) correlation in the first step, then the frame timing and CSSC(Cell Specific Scrambling Code) group is detected by taking the correlation of the CPICH(Common Pilot Channel) based on the property yielded by shifting the CSSC phase in the frequency domain. Finally, the CSSC phase within the group is identified in the third step. This paper proposes a modification group code with two or three block of the conventional CPICH based cell search algorithm in the second step which offers MS(Mobile Station) complexity reductions. however, the effect of the reduction complexity leads to degradation of the performance therefore, look for combination to have the most minimum degradation. the proposed block type group code with suitable combinations is the nearly sane performance as conventional group code and has a complexity reduction that is to be compared and verified through the computer simulation.

DFT-Based Channel Estimation with Channel Response Mirroring for MIMO OFDM Systems (MIMO OFDM 시스템을 위한 채널 응답 미러링을 이용한 DFT기반 채널 추정 기법)

  • Lee, JongHyup;Kang, Sungjin;Noh, Wooyoung;Oh, Jimyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.655-663
    • /
    • 2021
  • In this paper, DFT-Based channel estimation with channel response mirroring is proposed and analyzed. In General, pilot symbols for channel estimation in MIMO(Multi-Input Multi-Output) OFDM(Orthogonal Frequency-Division Multiplexing) Systems have a diamond shape in the time-frequency plane. An interpolation technique to estimate the channel response of sub-carriers between reference symbols is needed. Various interpolation techniques such as linear interpolation, low-pass filtering interpolation, cubic interpolation and DFT interpolation are employed to estimate the non-pilot sub-carriers. In this paper, we investigate the conventional DFT-based channel estimation for noise reduction and channel response interpolation. The conventional method has performance degradation by distortion called "edge effect" or "border effect". In order to mitigate the distortion, we propose an improved DFT-based channel estimation with channel response mirroring. This technique can efficiently mitigate the distortion caused by the DFT of channel response discontinuity. Simulation results show that the proposed method has better performance than the conventional DFT-based channel estimation in terms of MSE.

Performance Analysis and Compensation of FH/SC-FDMA System for the High-Speed Communication in Jamming Channel (재밍 채널에서 고속 통신을 위한 주파수 도약 SC-FDMA 통신 시스템의 성능 분석과 보상)

  • Kim, Jang-Su;Jo, Byung-Gak;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.551-561
    • /
    • 2009
  • FH system is very robust to the jamming interference. OFDM system is very good for the high speed communication system. But, it has high PAPR. SC-FDMA system based on OFT-spread OFDM was proposed to reduce high PAPR. Therefore, in this paper, we like to introduce the FH system into SC-FDMA system, which can be best solution to the jamming hostile environment and for the high power efficiency. Also, OFDM is very sensitive to ICI. Especially, ICI generated by frequency offset and phase noise breaks the orthogonality among sub-carriers, which seriously degrades the system performance. We analyze the performance of the FH SC-FDMA system in the PBJ and MTJ channel. In this paper, the ICI effects caused by phase noise, frequency offset and Doppler effects are analyzed and we like to propose the PNFS algorithm in the equalizer to compensate the ICI influences. Through the computer simulations, we can confirm the performance improvement.

ETSI BRAN(Broadband Radio Access Network)의 무선 ATM 및 광대역 무선 액세스 네트워크 표준화 및 기술동향

  • 이우용;김용진;강충구
    • Information and Communications Magazine
    • /
    • v.15 no.11
    • /
    • pp.124-142
    • /
    • 1998
  • ETSI BRAN (Broadband Radio Access Network)는 고속 무선 LAN 또는 고정 광대역 무선액세스 네트워크에서의 무선 접촉 계층과 ATM 및 IP(Internet Protocol) 코어 네트워크와의 연동을 위한 일부 기능을 표준화하기 위한 과제이다. 특히, BRAN의 HIPERLAN type-2(HIPERLAN/2)의 경우에는 과제의 범위는 무선 접속면, 무선 부시스템에서의 서비스 인터페이스, 서비스 구현에서 요구되는 연동 및 각종 지원 기능을 표준화하며, 무선 접속면의 경우에는 다수 벤더간의 상호 호환성을 제공할 수 있는 인터페이스를 구현하는 것이다. HIPERLAN/2의 기술 규격은 코어 네트워크와 독립적인 물리계층 및 데이터 링크 제어 (DATA Link Control: DLC) 계층과 서로 상이한 코어 네트워크와의 연동을 위한 네트워크 수렴 부계층을 다루게 될 것이며, 초기 단계에서는 ATM과 IP 코어 네트워크와의 연동 기능을 제시하게 될 것이다. 따라서 HIPERLAN/2기반의 시스템 규격을 제시하기 위해서는 네트워크 계층 및 기타 상위 계층에 대한 규격이 요규되며, 이는 ATM Forum에서의 무선 ATM 신호 방식 규격, IETF(Internet Engineering Task Force)의 IP규격, 그리고 ETSI의 SMG (Special Mobile Group) 프로젝트에서 표준화되고 있는 UMTS (Universal Mobile Telecommunication Service) 규격 등과 접목될 것이다. 결과적으로 무선 ATM 관점에서는 완전한 시스템 규격 작성은 ETSI BRAN과 ATM Forum에서 무선 접속 규격과 이동성 관리 및 신호 방식으로 각각 이원화되어 진행되고 있다. 현재 물리 계층에서의 전송 방식은 OFDM(Orthogonal Frequency Division Multiplexing)으로 확정되었으며, DLC 계층에서는 고정 길이의 TDD (Time Division Duplexing) TDMA 프레임 구조를 기반으로 AP (Access Point)에 의해 동적으로 상향 링크 자원을 예약 할당하는 매체 접근 제어 (Medium Access Control: MAC) 프로토콜이 고려되고 있다. 이와 같은 DLC 계층에서는 기본적으로 짧은 길이의 패킷을 통해 다양한 대역폭의 멀티미디어 트래픽을 효율적으로 수용하면서 ATM 네트워크뿐만 아니라 향후 IP 네트워크에서 요구하는 각 서비스별 QoS (Quality of Service)를 개별적으로 보장할 수 있는 기능을 구현하고자 한다. 향후 이 부문에 대한 표준화가 본격적으로 진행될 것으로 예상되며 HIPERLAN/2의 경우에는 1999년 중반까지 1차 기능 규격을 완료할 예정이며, BRAN 전반에 대한 완전한 규격을 2002년까지 완성하는 것을 목표로 하고 있다.

  • PDF

PAPR Reduction and BER Analysis of the OFDM System Using the TR and DCT Transform (톤 예약 기법과 DCT 변환을 이용한 OFDM 시스템의 PAPR 저감과 BER 분석)

  • Byeon, Heui-Seop;Shinn, Byung-Cheol;Ahn, Do-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.10 s.113
    • /
    • pp.976-984
    • /
    • 2006
  • OFDM system is very useful for the high speed communication system. However, OFDM system has a serious problem of high PAPR that results from the so many subcarriers in the same phase. This OFDM signal is distorted through the nonlinear HPA(High Power Amplifier). Tone reservation method is to insert tone signal in several types to reduce the PAPR after iterating this process by changing the tone signal. Also discrete cosine transform(DCT) can reduces the PAPR as multiplying the cosine value to change the angle and mix up with the data. In the paper, the combination of the TR method and DCT method is newly proposed for more effective reduction of the PAPR. Simulation results show that the proposed method outperforms the conventional simple TR method and DCT method with respect to the PAPR reduction and BER performance.

A Study on PAR Improvement of OFDM system using SLM-PTS Combine Method and ETD-Turbo Code (SLM-PTS 결합기법 및 ETD-Turbo부호를 적용한 OFDM 시스템에서의 PAR 개선에 관한 연구)

  • Sung Tae-Kyung;Kim Dong-Seek;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.755-761
    • /
    • 2005
  • In this paper, we propose a high-speed adaptive PTS method which eliminates high PAR (Peak-to-Average Power Ratio) and we compare the proposed method with other conventional methods. In addition, we have designed a combined type SLM-PTS scheme to reduce PAR and evaluate the performance. The system used for evaluating PAR performance can be constructed as COFDM (Coded Orthogonal Frequency Division Multiplexing) applying ETD(Enhabced Time Diversity)-Turbo coding scheme. All the analyses in this paper are focused on the system characteristics according to IFFT's point and modulation method and the performance evaluation are based on the PAR reduction rates. As a result, the SLM-PTS combination method reveals good PAR reduction rate and remarkable reduction in the amount of calculations. Especially, in the case of combine-3 scheme, we can achieve approximately $3.7\~3.9$ dB PAR reduction on a basis of 10-5 BER level. Moreover, we can eliminate the side information in COFDM system because of its adaptive characteristics in evaluating PAR reduction rate, so that the additional errors can be omitted.

Performance Analysis of OFDM-DSRC System Using LMMSE Equalization Technique (LMMSE 등화기법을 적용한 OFDM-DSRC 시스템의 성능분석)

  • Sung Tae-Kyung;Kim Soon-Young;Rhee Myung-Soo;Cho Hyung-Rae
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.23-28
    • /
    • 2005
  • The signal in wireless multi-path channel is affected by fading and ISI because of high data rate transmission, so the signal has the high error rate. The present modulation and demodulation method of DSRC system can not expect sufficient for providing data service over 1 Mbps, so the channel equalization and advanced modulation and demodulation methods are required. OFDM is generally known as an effective technique for high data rate transmission system, since it can prevent ISI by inserting a guard interval. However, a guard interval longer than channel delay spread has to be used in each OFDM symbol period, thus resulting a considerable loss in the efficiency of channel utilization Therefore the equalizer is necessary to cancel ISI to accommodate advanced ITS service with higher bit rate and longer channel delay spread condition In this paper, the channel equalizer for the OFDM -DSRC system was designed and its performance in a multi-path fading environment was evaluated with computer simulation.