• Title/Summary/Keyword: Orthogonal frequency-division multiplexing

Search Result 848, Processing Time 0.026 seconds

Performance Evaluation of an Improved Block Coding for PAPR Reduction (PAPR 저감을 위한 개선된 블록 코딩 방식의 성능 평가)

  • 이윤희;정기호;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.9
    • /
    • pp.889-897
    • /
    • 2002
  • In this paper, we propose an improved block coding scheme for PAPR reduction in the OFDM communication system. Unlike the conventional block coding scheme which uses one block encoder of subcarrier N, two block encoders of subcarrier N/2 is used for the proposed block coding scheme. This not only improves the coding gain, but enhances the spectral efficiency by twice due to the increment of code rate. PAPR Reduction performance is the same as the conventional block coding. When BER is $10^{-4}$, the proposed block coding scheme has coding gain of 0.5 dB than the conventional scheme.

A Measurement Study of Midamble based Cannel Estimation in IEEE 802.11p WAVE System (IEEE 802.11p WAVE 시스템에서 미드엠블을 이용한 채널추정 기법의 측정)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.733-738
    • /
    • 2013
  • Orthogonal Frequency Division Multiplexing (OFDM) based IEEE 802.11 a/g systems which are widely used in wireless LAN carry out channel estimation in one time per packet since the systems use only preamble. Whereas, midamble based channel estimation supports continuous channel estimation by tracking the channel state information periodically. Using IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) system, we analyze the performance of the proposed system via practical measurements. Based on these results, practical issues on midamble based channel estimation are investigated.

Performance Improvement of the Smart Antenna Placed in Wi-Fi Access Point (와이파이AP 용 FFT 전단 스마트안테나의 성능 개선)

  • Hong, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2437-2442
    • /
    • 2013
  • OFDM Wi-Fi AP is susceptible to the co-channel interference. As a countermeasure, the insertion of a smart has been addressed. Despite of the guaranteed efficiency, the complexity of the post-FFT algorithm often keeps itself from being selected as the countermeasure. Instead, simply constructed pre-FFT smart antenna of which the algorithm is based on the received signal covariance matrix is commonly used and the mathematical modeling of it has been deployed. Computer simulations evaluating the improved BER characteristics of the proposed pre-FFT using the covariance matrix of channel estimator output have been carried out. It has been demonstrated that channel matrix output based smart antenna is superior to that using received signal covariance matrix.

Real-Time White Spectrum Recognition for Cognitive Radio Networks over TV White Spaces

  • Kim, Myeongyu;Jeon, Youchan;Kim, Haesoo;Kim, Taekook;Park, Jinwoo
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.238-244
    • /
    • 2014
  • A key technical challenge in TV white spaces is the efficient spectrum usage without interfering with primary users. This paper considers available spectrum discovery scheme using in-band sensing signal to support super Wi-Fi services effectively. The proposed scheme in this paper adopts non-contiguous orthogonal frequency-division multiplexing (NC-OFDM) to utilize the fragmented channel in TV white space due to microphones while this channel cannot be used in IEEE 802.11af. The proposed solution is a novel available spectrum discovery scheme by exploiting the advantages of a sensing signaling. The proposed method achieves considerable improvement in throughput and delay time. The proposed method can use more subcarriers for transmission by applying NC-OFDM in contrast with the conventional IEEE 802.11af standard. Moreover, the increased number of wireless microphones (WMs) hardly affects the throughput of the proposed method because our proposal only excludes some subcarriers used by WMs. Additionally, the proposed method can cut discovery time down to under 10 ms because it can find available channels in real time by exchanging sensing signal without interference to the WM.

A Research on Low-power FFT(Fast Fourier Transform) Design for Multiband OFDM UWB(Ultra Wide Band) Communication System (Multiband OFDM UWB(Ultra Wide Band) 통신시스템을 위한 저전력 FFT(Fast Fourier-Transform) 설계에 관한 연구)

  • Ha, Jong-Ik;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2119.1_2120.1
    • /
    • 2009
  • UWB(Ultra Wide Band)는 차세대 무선통신 기술로 무선 디지털펄스라고도 한다. GHz대의 주파수를 사용하면서도 초당 수천~수백만 회의 저출력 펄스로 이루어진 것이 큰 특징이다[1]. 기존 무선통신 기술의 양대 축인 IEEE 802.11과 블루투스 등에 비해 속도와 전력소모 등에서 월등히 앞서고 있으며, SoC(System on a Chip)의 저전력 구현에 대한 연구가 활발히 진행되고 있다. OFDM은 크게 FFT(Fast Fourier Transform) 블록, Interpolation /decimation 필터 블록, 비터비 블록, 변복조 블록, 등화기 블록 등으로 구성된다. 고속 시스템에서는 대역효율성이 우수한 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 사용하고 있으며, OFDM 전송방식은 직렬로 입력되는 데이터 열을 병렬 데이터 열로 변환한 후에 부반송파에 실어 전송하는 방식이다. 이와 같은 병렬화와 부반송파를 곱하는 동작은 IFFT와 FFT로 구현이 가능한데, FFT 블록의 구현 비용과 전력소모를 줄이는 것이 핵심사항이라고 할 수 있다. 기존논문에서는 OFDM용 FFT 구조로 단일버터플라이연산자 구조, 파이프라인 구조, 병렬구조 등의 여러 구조가 제안되었다[2]. 본 논문에서는 Radix-8 FFT 알고리즘 기반의 New partial Arithmetic 저전력 FFT 구조를 제안하였다. 제안한 New partial Arithmetic 저전력 FFT구조는 곱셈기 대신 병렬 가산기를 이용 하여 지금까지 사용되는 FFT 구조보다 전력소모를 줄일 수 있음을 보였다.

  • PDF

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

Optimal Design of Piecewise Linear Companding Transforms for PAPR Reduction in OFDM Systems

  • Mazahir, Sana;Sheikh, Shahzad Amin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.200-220
    • /
    • 2016
  • Orthogonal frequency division multiplexing (OFDM) signals suffer from the problem of large peak-to-average power ratio (PAPR) which complicates the design of the analog front-end of the system. Companding is a well-known PAPR reduction technique that reduces the PAPR by transforming the signal amplitude using a deterministic function. In this paper, a novel piecewise linear companding transform is proposed. The design criteria for the proposed transform is developed by investigating the relationships between the compander and decompander's profile and parameters with the system's performance metrics. Using analysis and simulations, we relate the companding parameters with the bit error rate (BER), out-of-band interference (OBI), amount of companding noise, computational complexity and average power. Based on a set of criteria developed thereof, we formulate the design of the proposed transform. The main aim is to preserve the signal's attributes as much as possible for a predetermined amount of PAPR reduction. Simulations are carried out to evaluate and compare the proposed scheme with the existing companding transforms to demonstrate the enhancement in PAPR, BER and OBI performances.

Compensation Techniques for TWTA non-linear intermodulation of Satellite WiBro

  • Shrestha, Robin;Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • The high peak to average power ratio (PAPR) of OFDM (Orthogonal Frequency Division Multiplexing) system introduces inevitable non-linear distortion in the transmission due to the amplifier non-linear property. This causes both in-band distortion and out of band spectrum re-growth. In this paper we tried to compensate the problem by using polynomial based pre-distortion. Estimation of both the non-linear and inverse non-linear polynomial is achieved using the Least Square Error (LSE) method. Using these parameters closed form pre-distorter can be easily created. We also used the 'partial peak cancellation and clipping' method to remove the high peak present in the non constant amplitude of the OFDM signal responsible to drive the amplifier in near saturation region for better performance of the system

  • PDF

Performance Analysis of Pilot Patterns for Channel Estimation in OFDM Systems (OFDM 시스템에서 채널 추정을 위한 파일럿 패턴의 성능 분석)

  • Choe, Kwang-Don;Hyun, Deok-Soo;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.8A
    • /
    • pp.664-670
    • /
    • 2005
  • OFDM is a very attractive technique for achieving high-bit-rate data transmission and high spectrum efficiency in fading environment. However, the reliable detection of an OFDM signal in time-varying multipath fading channels is a challenging problem. Accordingly, various channel estimation methods have been proposed for performance improvement. But, conventional pilot patterns for channel estimation in OFDM systems have not robust characteristics relating to various mobile speed. To solve this drawback in conventional patterns, we propose the pilot patterns modified from conventional patterns to have a good error performance in time-varying fading channel. Simulation results show that the performance of the proposed pilot patterns is better than conventional patterns in fast time-varying channel.

Performance Analysis of a New Adaptive PTS Scheme for Reducing the PAPR and High Speed Processing in OFDM Systems (OFDM 시스템에서 PAPR기 감소와 고속처리를 위한 새로운 적응형 PTS 기법의 성능분석)

  • 채주호;임연주;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.710-716
    • /
    • 2003
  • OFDM is a very attractive technique for achieving high-bit-rate data transmission and high spectrum efficiency. However one of disadvantages of OFDM signal is the high PAPR characteristic when multicarriers are added up coherently. In this paper, we propose an adaptive PTS scheme using two threshold levels for PAPR reduction and reducing the amount of PAPR calculations with clipping scheme. Simulation results show that it is almost same between average bit error rate performance of the proposed scheme and that of a conventional scheme. Also, we obtain a great performance gain in the amount of calculations compared to the conventional scheme. Therefore, proposed system has a good performance in data processing time in OFDM wireless communication systems.