• 제목/요약/키워드: Orthogonal Cutting

검색결과 149건 처리시간 0.021초

STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구 (A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel)

  • 이동원;이현화;김진수;김종수
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

직교 절삭 기반 탄소섬유복합재 가공특성 관련 연구 (Evaluation of Machining Characteristics of the Carbon Fiber Reinforced Plastic (CFRP) Composite by the Orthogonal Cutting)

  • 김영빈;김민지;박형욱
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.439-445
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP) composites have been widely used due to their great strength, stiffness and light weight. However, due to its anisotropy and inhomogeneous properties the machining process of CFRP composites is typically more complex than that of regular metals. Since there are many defects, such as delamination and tool wear during the machining process of CFRP composites, the optimization of this process is essential in improving the productivity. In this study, orthogonal machining of CFRP composites was performed to identify the machining characteristics of these materials. In addition, an experimental observation of delamination was investigated through the use of scanning electron microscopy (SEM). In these experiments, the cutting forces were measured and analyzed to determine the difference between machining of CFRP composites and metals. The comparison between the numerical models and experimental results was performed in terms of the maximum cutting forces.

채터진동에서의 동적 절삭력의 모델링과 안정성 해석 (A modeling of dynamic cutting force and analysis of stability in chatter vibration)

  • 김정석;강명창
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.161-169
    • /
    • 1993
  • The elimination of chatter vibration is necessary to improve the precision and the productivity of the cutting operation. A new mathematical model of chatter vibration is presented in order to predict the dynamic cutting force from the static cutting data. The dynamic cutting force is analytically expressed by the static cutting coefficient and the dynamic cutting coefficient which can be determined from the cutting mechanics. The stability analysis is carried out by a two degree of freedom system. The chatter experiments are conducted by exciting the cutting tool with an impact hammer during an orthogonal cutting. A good agreement is shown between the stability limits predicted by theory and the critical width of cut determined by experiments.

  • PDF

절삭실험을 이용한 저합금강의 유동응력 결정 및 검증 (Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test)

  • 안광우;김동후;김태호;전언찬
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Identification of Cutting Mechanisms in Orthogonal Cutting of Glass Fiber Reinforced Composites

  • Choe Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2000년도 추계 학술논문발표회 논문집
    • /
    • pp.39-45
    • /
    • 2000
  • In recent years, composite materials such as fiber reinforced plastics (FRP) have gained considerable attention in the aircraft and automobile industries due to their light weight, high modulus and specific strength. In practice, control of chip formation appears to be the most serious problem since chip formation mechanism in composite machining has significant effects on the finished surface [1,2,3,4,5]. Current study will discuss frequency analysis based on autoregressive (AR) time series model and process characterization in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the different chip formation mechanisms and model coefficients are established.(omitted)

  • PDF

Characterization of Fiber Pull-out in Orthogonal Cutting of Glass fiber Reinforced Plastics

  • Park, Gi-Heung
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2003년도 추계 학술논문발표회 논문집
    • /
    • pp.113-117
    • /
    • 2003
  • The reliability of machined fiber reinforced composites (FRC) in high strength applications and the safety in using these components are often critically dependent upon the quality of surface produced by machining since the surface layer may drastically affect the strength and chemical resistance of the material [1,2,3,4]. Current study will discuss the characterization of fiber pull-out in orthogonal cutting of a fiber-matrix composite materials. A sparsely distributed idealized model composite material, namely a glass reinforced polyester (GFRP) was used as workpiece. Analysis method employs a force sensor and the signals from the sensor are processed using AR time series model. The experimental correlation between the fiber pull-out and the AR coefficients is examined first and effects of fiber orientation, cutting parameters and tool geometry on the fiber pull-out are also discussed.

  • PDF

2자유도 채터진동의 특성에 관한 연구 (A study on the chatter vibration of two degree of freedom systems)

  • 김정석;강명창;김병룡
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.216-226
    • /
    • 1993
  • Three dimensional cutting is considered as an equivalent orthogonal cutting through the plane containing both the cutting velocity vector and the chip flow velocity vector in dynamic cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static cutting. Particular attention is paid to the energy supplied to the vibratory system of cutting tool with two degree of freedom. In this approach, the phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angle of the fluctuating cutting force is considered in point of stability limits. Chatter vibration can be effectively suppressed by relatively increasing the spring constant and the damping coefficient of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theoretical value and experimental results.

  • PDF

A study on the optimal cutting condition of a high speed feeding type laser cutting machine by using Taguchi method

  • Lim Sang-Heon;Lee Choon-Man;Chung Won Jee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권1호
    • /
    • pp.18-23
    • /
    • 2006
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has presented the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by using Tacuchi method in the design of experiment. An L9(34) orthogonal array is adopted to study the effect of adjustment parameters. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. The surface roughness of sheet metal is regarded as a quality feature. Analysis of variance is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.

선삭에서 공구의 윗면경사각이 비절삭저항에 미치는 영향 (The Effect of Back Rake Angle of Tool for Specific Cutting Resistance in Turning)

  • 김정현
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.80-89
    • /
    • 1998
  • Back rake angle of tool is one of the fundamental effects to the cutting ability. In this paper, for several back rake angle of lathe tool (-5$^{\circ}$ , 0$^{\circ}$ , 5$^{\circ}$ , 10$^{\circ}$ , 15$^{\circ}$ ), we experimentally examine cutting forces via orthogonal cutting. Using measured cutting forces, a formula for specific cutting resistance is derived according to the variation of tool angle. Also, the measured cutting forces are analyzed in both time and frequency domain. Cutting parameters are obtained by measuring the thickness of chip, and the effect of the back rake angle of tool is manifested. This study maintains the predicted cutting model with improved accuracy.

  • PDF

다구찌 방법을 이용한 고속 이송방식 레이저 절단기의 최적 절단 조건에 관한 연구 (A Study on the Optimal Cutting Condition of High Speed Feeding Type Laser Cutting Machine by Taguchi Method)

  • 임상헌;박동근;이춘만
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.77-83
    • /
    • 2004
  • Cutting by a high speed laser cutting machine is one of most effective technologies to improve productivity. This paper has studied to obtain the cutting characteristics and optimal cutting conditions in a high speed feeding type laser cutting machine by Tacuchi method in design of experiments. A Lf(34) orthogonal array is adopted to study the effect of adjustment parameter. The adjustment parameters consist of cutting speed, laser power, laser output duty and assistant gas pressure. And the quality feature is selected as surface roughness of sheet metal. Variance analysis is performed in order to evaluate the effect of adjustment parameters on the quality feature of laser cutting process.