• Title/Summary/Keyword: Orthogonal Array

Search Result 523, Processing Time 0.025 seconds

Simultaneous Optimization for Robust Design Using Desirability Function to the Combined Array

  • Kwon, Yong-Man;Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.97-106
    • /
    • 2002
  • Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. and studied by others. In these studies, only single quality characteristic was considered. We propose how to simultaneously optimize multiple quality characteristics using desirability function when we used the combined-array approach to assign control and noise factors. An example is illustrated to the combined-array approach.

  • PDF

Simultaneous Optimization of Multiple Responses to the Combined Array

  • Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.57-64
    • /
    • 2001
  • In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et al (1990) and studied by Vining and Myers (1990) and others. In these studies, only single respouse variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses.

  • PDF

A Optimization of Butterfly Valve using the Orthogonal Array and the Characteristics Fuction (직교배열표와 특성함수를 이용한 Butterfly Valve의 최적설계)

  • Kang J.;Choi J.S.;Park Y.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1967-1974
    • /
    • 2005
  • The butterfly valve has been used to control a flow effectively in the industrial because of its lightweight, simple structure and the rapidity of its manipulation. However, it is difficult to have the existing structural optimization using field analysis from CFD to structure analysis when the structure is influenced by fluid. This paper is evaluated the specificity to get the flow characteristic and stability of the butterfly valve using FEM and CFD. Also, it accomplished the shape optimization design using the orthogonal arrangement and characteristic function. Research result, a few experiments showed the optimal results of three dimensional structures to be multi-objective.

  • PDF

Occupant Analysis and Seat Design to Reduce the Neck Injury for Rear End Impact (후방추돌시 목상해를 고려한 승객거동해석 및 좌석설계)

  • 신문균;박기종;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.182-194
    • /
    • 1999
  • Occupant injury in rear end impact is rapidly becoming one of the most aggravating traffic safety problems with high human suffering and societal costs. Although rear end impact occurs at relatively low speed , it may cause permanent disability due to neck injuries resulting from an abrupt moment, shear force , and tension/compression force at the occipital condyles. The analysis is performed for a combined occupant-eat model response, using the SAFE(Safety Analysis for occupant crash Environment) computer program. The computational results are verified by those from sled tests. A parameter study is conducted for many physical and mechanical properties. Seat design has been performed based on the design of experiment process with respect to five parameters; seat-back upholstery stiffness, torsional stiffness of the seat-back. An orthogonal array is selected from the parameter study. A good design has been found from the analysis results based on the orthogonal array. The results show that reductions of stiffness in seat-back upholstery and joint are the most effective for preventing neck injuries.

  • PDF

Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method (실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

Process Optimization for Thermal-sprayed Ni-based Hard Coating by Design of Experiments (실험계획법에 의한 니켈기 경질 용사코팅의 최적 공정 설계)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-94
    • /
    • 2009
  • In this work, the optimal process has been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA) for thermal-sprayed Ni-based hard coating. Ni-based hard coatings were fabricated by flame spray process on steel substrate. Then, the hardness test and observation of microstructure of the coatings were performed. The results of hardness test were analyzed by ANOVA. The ANOVA results demonstrated that the acetylene gas flow had the greatest effect on hardness of the coatings. The oxygen gas flow was found to have a neglecting effect. From these results, the optimal combination of the flame spray parameters could be predicted. The calculated hardness of the coatings by ANOVA was found to lie close to that of confirmation experimental result. Thus, it was considered that design of experiments design using orthogonal array and ANOVA was useful to determine optimal process of thermal-sprayed Ni-based hard coating.

  • PDF

An Estimation on Failure Boundary Condition of Rocker Arm Shaft for 4-Cylinder SOHC Engine Using Orthogonal Array (직교배열표를 이용한 4기통 SOHC 엔진용 로커암 축의 파손경계조건 평가에 관한 연구)

  • Lee, Soo-Jin;Lee, Dong-Woo;Hong, Soon-Hyeok;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1161-1168
    • /
    • 2005
  • As a result of vehicle maintenance of rocker arm shaft for 4-cylinder SOHC engine, failure analysis of rocker arm shaft is needed. Because more than $30\%$ of vehicles investigated have been fractured. Failure analysis is classified into an naked eyes, microscope and X-ray fractography etc. It can predict applied load as well as load type. These methods are applicable to components with simple boundary condition but aren't applicable to components with complex boundary condition. The existing fractography don't catch hold of failure boundary condition quantitatively. Especially, in case that the components isn't fractured at same position. We must determine the most dangerous failure boundary condition to evaluate their operation mechanism. The effect of various factors on response should be estimated to solve this statical problem. This study presents the most dangerous failure boundary condition of rocker arm shaft using orthogonal array and ANOVA in order to assure its robustness.

Optimal Design of A Quick-Acting Hydraulic Fuse Using Design of Experiments and Complex Method (실험계획법과 콤플렉스법에 의한 고성능 유압휴즈의 최적 설계)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.8-14
    • /
    • 2015
  • A quick-acting hydraulic fuse, which is mainly composed of a poppet, a seat, and a spring, must be designed to minimize the leaked oil volume during fuse operation on a line rupture. The optimal design parameters of a quick-acting hydraulic fuse were searched using the design of experiments method and the complex method. First, the $L_{50}(5^4)$ orthogonal array is used to find the robust minimum point among the 625 points of design variables. The search range can then be narrowed around the robust minimum point. Second, the $L_{25}(5^4)$ orthogonal array is used to obtain the variations of the design variables in the narrowed search range. The variations of design variables are used to set the structure of a polynomial equation representing the leakage oil volume of the quick-acting hydraulic fuse. The least squares method is then applied to obtain the coefficients of polynomial equation. Finally, the complex method is used to find the optimal design parameters where the objective function is described by the polynomial equation.

Optimization of remote plasma enhanced chemical vapor deposition oxide deposition process using orthogonal array table and properties (직교배열표를 쓴 remote-PECVD 산화막형성의 공정최적화 및 특성)

  • 김광호;김제덕;유병곤;구진근;김진근
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.171-175
    • /
    • 1995
  • Optimum condition of remote plasma enhanced chemical vapor deposition using orthogonal array method was chosen. Characteristics of oxide films deposited by RPECVD with SiH$_{4}$ and N$_{2}$O gases were investigated. Etching rate of the optimized SiO$_{2}$ films in P-etchant was about 6[A/s] that was almost the same as that the high temperature thermal oxide. The films showed high dielectric breakdown field of more than 7[MV/cm] and a resistivity of 8*10$^{13}$ [.ohmcm] around at 7[MV/cm]. The interface trap density of SiO$_{2}$/Si interface around the midgap derived from the high frequency C-V curve was about 5*10$^{10}$ [/cm$^{2}$eV]. It was observed that the dielectric constant of the optimized SiO$_{2}$ film was 4.29.

  • PDF

A Study on the Working Condition Effecting on the Maximum Working Temperature and Surface Roughness in Side Wall End Milling Using Design of Experiment (실험계획법을 이용한 엔드밀 가공 시 최대가공온도와 표면조도에 미치는 가공조건에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.46-53
    • /
    • 2009
  • To find the working condition is one of the important factors in precision machining. In this study, we analyzed maximum working temperature by infra-red camera and surface roughness in side wall end milling using design of experiment (DOE): RSM(response surface methodology), ANOM(analysis of means) and ANOVA(analysis of variance) by table of orthogonal array. ANOM and ANOVA are well adapted to select sensitivity of design variables for maximum working temperature and surface roughness. The effective design variables and their levels should be determined using ANOM, ANOVA. RSM is presented 2nd order approximation polynomial of maximum working temperature and surface roughness is composed with design variables. Therefore, it is expected that the proposed procedure using design of experiment : table of orthogonal array, ANOM, ANOVA and RSM can be easily utilized to solve the problem of working condition.

  • PDF