• Title/Summary/Keyword: Orthodontic titanium implant

Search Result 17, Processing Time 0.025 seconds

Removal torque of sandblasted large grit, acid etched treated mini-implant (Sandblasted large grit, acid etched 표면처리에 따른 교정용 미니 임플랜트의 제거회전력에 관한 연구)

  • Oh, Nam-Hee;Kim, Seong-Hun;Kook, Yoon-Ah;Lee, Keun-Hye;Kang, Yoon-Goo;Mo, Sung-Seo
    • The korean journal of orthodontics
    • /
    • v.36 no.5
    • /
    • pp.324-330
    • /
    • 2006
  • Objective: The purposes of this study were to evaluate the differences between sand blasted, large grit and acid-etched (SLA) treated mini-implants and smooth surface orthodontic mini-implants in relation to the removal torque as well as the histologic analysis. Methods: Custom-made, screw-shaped, titanium implants with a length of 9.5 mm and an outer diameter of 1.8 mm were divided into 2 groups; the SLA group (20 SLA treated orthodontic mini-implants) and the smooth surface group (20 smooth surface mini-implants), and placed In the tibia metaphysis of 10 rabbits. Each rabbit had 4 mini-implants placed, 2 in each tibia. The right tibia were implanted with the SLA group mini-implants and the left tibia had the smooth group mini-implants placed. Each mini-implant group were immediately applied with a continuous traction force of 150 g using a Ni-Ti coil spring. The rabbits were sacrificed 6 weeks post-surgically. Subsequently, the legs were stabilized, the Ni-Ti coil springs were removed and the mini-implants were removed under reverse torque rotation with a digital torque gauge. Results: 6 weeks after placement, the SIA group presented a higher mean removal torque value (8.29 Ncm) than the smooth group (3.34 Ncm) and histologic analysis revealed a higher new bone formation aspect along the screw in the SLA group. Conclusion: Results of this study indicates that SLA treated mini-implants may endure higher orthodontic forces without loosening.

Effects of continuous force application for extrusive tipping movement on periapical root resorption in the rat mandibular first molar

  • Matsumoto, Yoshiro;Sringkarnboriboon, Siripen;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.339-345
    • /
    • 2018
  • Objective: The purpose of this study was to clarify the effects of continuous force application for extrusive tipping movement and occlusal interference on periapical root resorption in the rat mandibular first molar. Methods: We constructed an appliance comprising a titanium screw implant with a cobalt-chromium post as the anchorage unit and a nickel-titanium closed coil spring (50 cN) as the active unit. Force was applied on the mandibular left first molar of rats for 8 (n = 10) and 15 days (n = 10; experimental groups), with the tooth in occlusion. Five rats were included as a non-treated control group to examine the body effect of the appliance. Active root resorption lacunae, identified using tartrate-resistant acid phosphatase, were evaluated in terms of the length, depth, and area. Results: The rat mandibular first molars were mesially tipped and extruded in the occlusal direction. This mesio-occlusal tipping movement and occlusion resulted in the formation of a compression zone and active root resorption lacunae in the distoapical third of the distal roots. However, there was no significant difference in the amount of root resorption between the two experimental groups. The control group did not exhibit any active root resorption lacunae. Conclusions: Periapical root resorption was induced by continuous extrusive tipping force and occlusal interference in rat mandibular molars. These data suggest that we orthodontists had better take care not to induce occlusal interference during our orthodontic treatment.

Influence of immediate loading on the removal torque value of mini-screws (교정력의 즉시 부하가 미니스크류의 제거 회전력에 미치는 영향의 평가)

  • Sun, Seung-Bum;Kang, Yoon-Goo;Kim, Seung-Hun;Mo, Sung-Seo;Kook, Yoon-Ah
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.400-406
    • /
    • 2007
  • The purpose of this experimental study was to evaluate the effect of immediate orthodontic loading on the stability at the bone-implant interface of titanium miniscrews in a rabbit model. Methods: Forty titanium miniscrews (1.6 mm diameter, 8 mm length) were inserted in the tibiae of 10 rabbits. Twenty test group miniscrews were subjected to continuous orthodontic forces of 200g immediately after implantation for a period of 6 weeks. The remaining 20 control group miniscrews were left unloaded for the same follow-up interval. Removal torque values were recorded using a digital torque gauge. An independent t-test was performed. Results: All the miniscrews were stable, and exhibited no mobility or displacement throughout the experimental period. Histologically, miniscrews were well-integrated into bone. No statistically significant differences in removal torque data were found between the loaded test and the unloaded control groups. Conclusions: These findings suggest that titanium miniscrews can be used as anchoring units for orthodontic tooth movement immediately after insertion.

THE EFFECT OF DENIAL ORTHOPEDIC FORCE TO IMPLANTS ON BONE TISSUE BEFORE COMPLETE OSSEOINTEGRATION (골유착 이전에 악정형력이 임프란트 주위조직에 미치는 영향)

  • Kim, Young-Ho;Lee, Cheol Won
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.453-459
    • /
    • 1998
  • The dental implants for edentulous Patients have been used for more than 20 years. After the introduction of osseointegration by $Br{\aa}nemark$, the commercially pure titanium implants were accepted by most practitioners. Recently dental implants are used for orthodontic anchorages as well as prosthetic abutment. Many researchers have reported implants as a good orthodontic anchorage through basic research and clinical evaluation. But previous researches were done after the healing time for osseointegration of inserted implants. If dental implants are to be used for prosthetic abutment the healing time for osseointegration is necessary, but orthodontic forces to implants are different from bite force regarding its amount of force, duration and direction. The authors evaluated the effect of orthopedic force to implants on bone tissue before osseointegration. 48 implants were placed at 12 rabbits. 2 implants into left side and 2 implants into right side were inserted along the long axis of femur respectively 2 weeks (2 weeks group), 4 weeks (4 weeks group) and 6 weeks (6 weeks group) after implants placement, 300g force had been applied to the implants at left side femur by Ni-Ti close coil spring for 4 weeks (experimental group) and no force applied to implants at right side femur (control group). After the force application for 4weeks, rabbits were sacrificed and microscopic evaluation was done by hematoxylin-eosin stain and Masson trichrome stain. The result3 were followed. 1. All implants in experimental group remained rigid after the force application for 4 weeks. 2. More fibrous tissue between bone and implants were noticed at 2 weeks experimental group than 2 weeks control group 3. More bone remodeling was noticed at 4weeks group than 2 weeks group and it was difficult to find out fibrous tissue between bone and implants at both experimental and control group of 4 weeks group. 4. It was hard to distinguish experimental group from control group at 6 weeks group. Therefore if initial stability can be obtained on implant insertion, it can be possible to use implants as a orthodontic anchorage before the healing time for osseointegration.

  • PDF

En-masse retraction with a preformed nickel-titanium and stainless steel archwire assembly and temporary skeletal anchorage devices without posterior bonding

  • Jee, Jeong-Hyun;Ahn, Hyo-Won;Seo, Kyung-Won;Kim, Seong-Hun;Kook, Yoon-Ah;Chung, Kyu-Rhim;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.236-245
    • /
    • 2014
  • Objective: To evaluate the therapeutic effects of a preformed assembly of nickel-titanium (NiTi) and stainless steel (SS) archwires (preformed C-wire) combined with temporary skeletal anchorage devices (TSADs) as the sole source of anchorage and to compare these effects with those of a SS version of C-wire (conventional C-wire) for en-masse retraction. Methods: Thirty-one adult female patients with skeletal Class I or II dentoalveolar protrusion, mild-to-moderate anterior crowding (3.0-6.0 mm), and stable Class I posterior occlusion were divided into conventional (n = 15) and preformed (n = 16) C-wire groups. All subjects underwent first premolar extractions and en-masse retraction with preadjusted edgewise anterior brackets, the assigned C-wire, and maxillary C-tubes or C-implants; bonded mesh-tube appliances were used in the mandibular dentition. Differences in pretreatment and post-retraction measurements of skeletal, dental, and soft-tissue cephalometric variables were statistically analyzed. Results: Both groups showed full retraction of the maxillary anterior teeth by controlled tipping and space closure without altered posterior occlusion. However, the preformed C-wire group had a shorter retraction period (by 3.2 months). Furthermore, the maxillary molars in this group showed no significant mesialization, mesial tipping, or extrusion; some mesialization and mesial tipping occurred in the conventional C-wire group. Conclusions: Preformed C-wires combined with maxillary TSADs enable simultaneous leveling and space closure from the beginning of the treatment without maxillary posterior bonding. This allows for faster treatment of dentoalveolar protrusion without unwanted side effects, when compared with conventional C-wire, evidencing its clinical expediency.

Histologic and biomechanical characteristics of orthodontic self-drilling and self-tapping microscrew implants (Self drilling과 Self-tapping microscrew implants의 조직학적 및 생역학적인 비교)

  • Park, Hyo-Sang;Yen, Shue;Jeoung, Seong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Objective: The purpose of this study was to compare the histological and biomechanical characteristics of self-tapping and self-drilling microscrew implants. Methods: 112 microscrew implants (56 self-drilling and 56 self-tapping) were placed into the tibia of 28 rabbits. The implants were loaded immediately with no force, light (100 gm), or heavy force (200 gm) with nickel-titanium coil springs. The animals were sacrificed at 3- and 5-weeks after placement and histologic and histomorphometric analysis were performed under a microscope. Results: All microscrew implants stayed firm throughout the experiment. There was no significant difference between self-drilling and self-tapping microscrew implants both in peak insertion and removal torques. Histologic examinations showed there were more defects in the self-tapping than the self-drilling microscrew implants, and newly formed immature bone was increased at the interface in the self-tapping 5-week group. There was proliferation of bone towards the outer surface of the implant and/or toward the marrow space in the self-drilling group. Histologically, self-drilling microscrew implants provided more bone contact initially but the two methods became similar at 5 weeks. Conclusion: These results indicate the two methods can be used for microscrew implant placement, but when using self-tapping microscrew implants, it seems better to use light force in the early stages.

Biomechanical considerations for uprighting impacted mandibular molars

  • Morita, Yukiko;Koga, Yoshiyuki;Nguyen, Tuan Anh;Yoshida, Noriaki
    • The korean journal of orthodontics
    • /
    • v.50 no.4
    • /
    • pp.268-277
    • /
    • 2020
  • This case report demonstrates two different uprighting mechanics separately applied to mesially tipped mandibular first and second molars. The biomechanical considerations for application of these mechanisms are also discussed. For repositioning of the first molar, which was severely tipped and deeply impacted, a novel cantilever mechanics was used. The molar tube was bonded in the buccolingual direction to facilitate insertion of a cantilever from the buccal side. By twisting the distal end of the cantilever, sufficient uprighting moment was generated. The mesial end of the cantilever was hooked over the miniscrew placed between the canine and first premolar, which could prevent exertion of an intrusive force to the anterior portion of the dentition as a side effect. For repositioning of the second molar, an uprighting mechanics using a compression force with two step bends incorporated into a nickel-titanium archwire was employed. This generated an uprighting moment as well as a distal force acting on the tipped second molar to regain the lost space for the first molar and bring it into its normal position. This epoch-making uprighting mechanics could also minimize the extrusion of the molar, thereby preventing occlusal interference by increasing interocclusal clearance between the inferiorly placed two step bends and the antagonist tooth. Consequently, the two step bends could help prevent occlusal interference. After 2 years and 11 months of active treatment, a desirable Class I occlusion was successfully achieved without permanent tooth extraction.