• Title/Summary/Keyword: Orthodontic adhesive

Search Result 79, Processing Time 0.022 seconds

A comparative study of physical properties of $TiO_2$ thin films according to a coating method on orthodontic wires and brackets (교정용 와이어 및 브라켓에 이산화티탄 광촉매 코팅 시 코팅방법에 따른 비교연구)

  • Koh, Eun-Hee;Cho, Jin-Hyoung
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.451-464
    • /
    • 2006
  • The purpose of this study was to search for an appropriate method of coating $TiO_2$ on orthodontic appliances. $TiO_2$ thin films were deposited on orthodontic wires and brackets using sol-gel, CVD (Chemical Vapor Deposition) and PE-CVD (Plasma Enhanced-CVD) methods. The roughness of $TiO_2$-coated surfaces was investigated via scanning electron microscope (SEM) and adhesive strength of $TiO_2$ thin films was measured by adhesive tape pull test. Methylene blue degradation test was carried out to evaluate the photocatalytic activity of $TiO_2$ and the corrosion resistance of $TiO_2$ thin films against fluoride solution was also analyzed by observing the surfaces of $TiO_2$-coated wires and brackets via SEM after immersion in sodium fluoride solution. Through the comparison of properties and photocatalytic activity of $TiO_2$ thin films according to the coating methods, the following results were obtained. Smoother surfaces of $TiO_2$ thin films were generated by CVD or PE-CVD methods than through the sol-gel method or the control. Adhesive strength of the $TiO_2$ thin films was highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Photocatalytic activity of $TiO_2$ thin films on methylene blue was the highest in PE-CVD and gradually became lower in the order of CVD, then the sol-gel method. Corrosion resistance of $TiO_2$ thin films against fluoride solution was stronger in CVD and PE-CVD methods than in the sol-gel method. The results of this study suggest that the CVD or PE-CVD methods is more appropriate than the sol-gel method for $TiO_2$ coating on orthodontic wires and brackets.

APPLICATION OF TIN ION-PLATING TO THE ORTHODONTIC APPLIANCE (교정용 장치물에 대한 TiN Ion Plating의 응용)

  • Kwon, Oh-Won;Kim, Kyo-Han
    • The korean journal of orthodontics
    • /
    • v.21 no.1 s.33
    • /
    • pp.7-16
    • /
    • 1991
  • To estimate the possibility of the application of TiN ion-plating to the orthodontic appliance, colorimetric properties, and characteristics of ion-plated film as well as adhesive strength of TiN film to the substrate and mechanical properties of ion-plated orthodontic appliance were investigated. The obtained results were as follows: 1) TiN ion-plated film had the colorimetric properties which were the hue of about 2.5 Y, the brightness of about 6, and the chroma of about 4 by the standard color chip of JIS. 2) TiN ion-plated film was $2{\mu}m$ in thickness and its deposition pattern was rather irregular. 3) TiN phase was confirmed on the X-ray diffraction pattern. 4) Critical load for delamination of ion-plated film from stainless steel band was 10N. 5) Tensile and yield strength of ion-plated specimen was increased about 10Kg $f/mm^2$, while elongation was decreased $1\%$ compairing to the values of the non ion-plated specimen.

  • PDF

Change in shear bond strength of orthodontic brackets using self-etching primer according to adhesive types and saliva contamination (Self-etching primer를 사용하여 교정용 브라켓 접착 시 접착제와 타액오염에 따른 전단결합강도 변화)

  • Nam, Eun-Hye;Yoon, Young-Ah;Kim, Il-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.433-442
    • /
    • 2005
  • The purpose of this study was to evaluate and compare the shear bond strength of orthodontic brackets depending on the variety of adhesives and whether saliva exists, by using self-etching primer (SEP). Groups were divided according to the type of adhesive into resin adhesive (Trans bond XT) and resin-modified glass ionomer cement (Fuji Ortho LC). One group of resin adhesive used XT primer after etching with 37% phosphoric acid, and the other group used self-etching primer. One group of resin-modified glass ionomer cement only used etching for bonding, and the other group used SEP. Each of the groups were also classified by whether saliva was contaminated or not. and then the shear bond strength was measured. The results showed that when using resin adhesive, the shear bond strength of SEP was lower than the XT primer. In the resin-modified glass ionomer cement groups, the shear bond strength which depends on the priming method, did not have a meaningful difference statistically When saliva was contaminated, the group which used SEP, regardless of the adhesive variety, had a greater shear bond strength than the normal priming group. From these results, SEP showed a shear bond strength that is possible to be used clinically, regardless of the adhesive variety. It can especially be clinically useful to use SEP to bond brackets even on tooth surfaces contaminated with saliva, because it offers the appropriate bonding strength as well as shorter treatment time and easy application.

Evaluation of different enamel conditioning techniques for orthodontic bonding

  • Turkoz, Cagri;Ulusoy, Cagri
    • The korean journal of orthodontics
    • /
    • v.42 no.1
    • /
    • pp.32-38
    • /
    • 2012
  • Objective: The aim of this study was to compare the effects of different enamel conditioning techniques for bracket bonding. Methods: Ninety-one human premolars were randomly divided in six groups of 15 specimens each. The enamel surfaces of the teeth were etched with 35% orthophosphoric acid in Group 1, with a self-etching primer in Group 2, sandblasted in Group 3, sandblasted and etched with 35% orthophosphoric acid in Group 4, conditioned by Er:YAG laser in Group 5 and conditioned by Er:YAG laser and etched with 35% phosphoric acid gel respectively in Group 6. After enamel conditioning procedures, brackets were bonded and shear bonding test was performed. After debonding, adhesive remnant index scores were calculated for all groups. One tooth from each group were inspected by scanning electron microscope for evaluating the enamel surface characteristics. Results: The laser and acid etched group showed the highest mean shear bond strength (SBS) value ($13.61{\pm}1.14$ MPa) while sandblasted group yielded the lowest value ($3.12{\pm}0.61$ MPa). Conclusions: Although the SBS values were higher, the teeth in laser conditioned groups were highly damaged. Therefore, acid etching and self-etching techniques were found to be safer for orthodontic bracket bonding. Sandblasting method was found to generate inadequate bonding strength.

Effects of conventional and self-etching adhesive systems on bond strength of orthodontic attachments bonded to erupted and unerupted teeth (치아 맹출 유무에 대한 자가부식 접착제에 의한 교정용 부착장치의 접착강도)

  • Nur, Metin;Uysal, Tancan;Yesilyurt, Cemal;Bayram, Mehmet
    • The korean journal of orthodontics
    • /
    • v.40 no.4
    • /
    • pp.267-275
    • /
    • 2010
  • Objective: The aim of this study was to evaluate and compare the shear bond strength (SBS) and failure-mode of orthodontic buttons bonded to erupted and unerupted teeth with conventional and self-etching adhesive systems. Methods: Eighty-four erupted and 84 unerupted, human third-molar teeth were used. For both groups, the buccal surfaces of each tooth were assigned one of the following type of adhesive systems (n = 12). A, Conventional systems: 1, Transbond XT (3M Unitek, Monrovia, CA, USA); 2, Prime & Bond NT (Dentsply/Caulk, Milford, USA); 3, Single Bond (3M ESPE, Minnesota, USA); and B, Self-etching adhesives; 4, Clearfil SE Bond (Kuraray, Okayama, Japan); 5, Transbond Plus (3M Unitek, Monrovia, CA, USA); 6, Clearfil S3 (Kuraray, Tokyo, Japan); 7, G Bond (GC, Tokyo, Japan). The SBSs of the attachments and the adhesive remnant index (ARI) scores were recorded. Data were analyzed with analysis of variance (ANOVA), independent-sample t-test and chi-square tests. Results: When the SBSs of erupted and unerupted teeth were compared, only the Clearfil-SE Bond and G-Bond were significantly different. Bond strengths of all adhesive systems were higher in unerupted teeth than erupted teeth, except the Single-Bond system. Conclusions: When using conventional adhesives, bonding to erupted and unerupted teeth may not be significantly different. However, clinicians need to take into consideration the types of self-etching systems before usage.

Shear bond strength of orthodontic adhesive to amalgam surface using light-cured resin (광중합형 레진으로 아말감 면에 브라켓 접착 시 전단결합강도)

  • Cho, Ji-Young;Lee, Dong-Yul;Lim, Yong-Kyu
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.443-450
    • /
    • 2005
  • This study was performed to compare the shear bond strength of orthodontic adhesive to amalgam according to different light sources (halogen-based light and light emitting diode (LED)) and amalgam surface treatments. Ninety extracted human premolars were randomly divided into 6 groups (4 experimental and 2 control groups) of 15 by light sources and surface treatments. Orthodontic brackets were bonded and shear bond strength was measured with an Instron universal testing machine. The findings were as follows: The bond strength of adhesive to amalgam surface was 3-5.5 MPa which was lower than that of acid-etched enamel (19 MPa) control. In the sandblasted amalgam surface, the shear bond strength of the halogen light group was higher than that of the LED group (p < 0.05) but. in the non-treated amalgam surface. there was no significant difference in the shear bond strength according to the light sources (p> 0.05). Within the same light source. sandblasting had no significant effect on the shear bond strength of the adhesive bonded to amalgam surface (p > 0.05). There was no significant difference in shear bond strength according to the light sources in acid-etched enamel control groups. This results suggest that there can be a limit in using light curing adhesives when brackets are bonded to an amalgam surface. Additional clinical studies are necessary before routine use of halogen light and LED light curing units can be recommended in bonding brackets to an amalgam surface.

Evaluation of Shear Bond Strength of Various Orthodontic Bracket Bonding Agents (수종의 교정용 브라켓 접착 레진의 전단 강도 평가)

  • Youngjun, Ham;Miran, Han
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.264-273
    • /
    • 2022
  • Due to the development of properties of adhesive materials currently used in dentistry, the bonding ability between the brackets and the tooth enamel has been greatly improved. In general, in situations where cooperation can be obtained, adhesion of the orthodontic bracket through the conventional three-step process can show excellent bonding strength. However, if it is difficult to expect patient cooperation, as in the pediatric dentistry area, or if moisture isolation is not properly performed, the binding strength that does not reach the expected effect. As a result, various products that simplify the process for adhesion are being developed. The aim of this study was to evaluate and compare the shear bonding strength between the conventional 3-step adhesion system, self-etching primer system and one-step adhesion system that reduces the priming process. A total of 60 human maxillary, mandibular premolars were prepared. Group I (control group) were followed conventional 3-step bonding process. Group II were conditioned with self-etching primer. Group III were etched with 37% phosphoric acid and brackets were bonded with self-priming adhesive. The resultant shear bond strength of each group was measured and an adhesive remnant index (ARI) was recorded. The mean shear bond strength of group I, II, III were 14.69 MPa, 11.21 MPa and 12.21 MPa respectively. Significant differences could only be found between group I, II and group I, III (p < 0.05). The ARI indicated no significant difference among all groups.

Evaluation of Shear Bond Strength and Microleakage of Self-adhesive Giomer

  • Gwangsuk Kim;Juhyun Lee;Haeni Kim;Howon Park
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • This study was aimed to evaluate the bonding performance of a self-adhesive giomer and compare it to a conventional flowable composite resin with regard to shear bond strength and microleakage in enamel and dentin. Healthy human premolars extracted for orthodontic treatments were used in the study. For shear bond strength tests, enamel and dentin specimens were prepared for the study group with self-adhesive giomer and for the control group with conventional flowable composite resin with a 5th-generation adhesive system. A universal testing machine was used to measure the shear bond strength. For the microleakage tests, specimens were immersed in a 2% methylene blue solution for 24 hours, cut into sections, and evaluated with a stereomicroscope for the extent of dye penetration. The results of the study showed no statistically significant difference in shear bond strength between the self-adhesive giomer and the conventional flowable composite resin in enamel (p = 0.091). On the contrary, in dentin, the self-adhesive giomer showed significantly lower shear bond strength (p < 0.0001). The microleakage of the self-adhesive giomer was significantly higher than that of the conventional flowable composite resin (p = 0.002). Self-adhesive giomer is considered useful for restoring small cavities at the enamel level of pediatric patients by reducing chair time with the advantage of a simple bonding process. However, as the study was conducted in a laboratory setting, further research in a clinical environment is deemed necessary.

Orthodontic bracket bonding to glazed full-contour zirconia

  • Kwak, Ji-Young;Jung, Hyo-Kyung;Choi, Il-Kyung;Kwon, Tae-Yub
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.106-113
    • /
    • 2016
  • Objectives: This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods: Glazed zirconia (except for the control, Zirkonzahn Prettau) disc surfaces were pre-treated: PO (control), polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z) or a silane primer (Monobond-S, S) was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S). Metal bracket-bonded specimens were stored in water for 24 hr at $37^{\circ}C$, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10). Results: Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z ($4.60{\pm}1.08MPa$) and all other groups ($13.38{\pm}2.57-15.78{\pm}2.39MPa$, p < 0.05). For AA-Z, most of the adhesive remained on the bracket. Conclusions: For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

Low-shrinking composites. Are they reliable for bonding orthodontic retainers?

  • Uysal, Tancan;Sakin, Caglar;AI-Qunaian, Talal
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Objective: To evaluate the shear bond strength (SBS), fracture mode, wire pull out (WPO) resistance and microleakage between low-shrinking and conventional composites used as a lingual retainer adhesive. Methods: A total of 120 human mandibular incisor teeth, extracted for periodontal reasons, were collected. Sixty of them were separated into two groups. To determine the SBS, either Transbond-LR (3M-Unitek) or Silorane (3M-Espe) was applied to the lingual surface of the teeth by packing the material into standard cylindrical plastic matrices (Ultradent) to simulate the lingual retainer bonding area. To test WPO resistance, 20 samples were prepared for each composite where the wire was embedded in the composite materialand cured. Then tensile stress was applied until failure of the composite occurred. The remaining 60 teeth were divided into two groups and multi-stranded 0.0215-inch diameter wire was bonded with the same composites. Microleakage was evaluated by the dye penetration method. Statistical analyses were performed by Wilcoxon, Pearson chi-square, and Mann-Whitney-U tests at p < 0.05 level. Results: The SBS and WPO results were not statistically significant between the two groups. Significant differences were found between the groups in terms of fracture mode (p < 0.001). Greater percentages of the fractures showed mix type failure (85%) for Silorane and adhesive (60%) for Transbond-LR. Microleakage values were lower in low-shrinking composite than the control and this difference was found to be statistically significant (p < 0.001). Conclusions: Low-shrinking composite produced sufficient SBS, WPO and microleakage values on the etched enamel surfaces, when used as a lingual retainer composite.