• Title/Summary/Keyword: Orifice size

Search Result 190, Processing Time 0.028 seconds

Model for the Inertial Focusing of Particles Using an Atmospheric Aerodynamic Lens (상압 공기역학적 렌즈의 입자 관성집속 모델)

  • Lee, Jin-Won;Lee, Min-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.315-321
    • /
    • 2001
  • Aerodynamic lenses are widely used in generating particle beams of high density and small diameter, but analytical or modeling studies are limited only in the free molecular regime. In this study, it is shown that generating particle beam is also possible in atmospheric pressure range, and the mechanism of generating particle beam using an orifice is analysed into three different parts : fluid dynamic contraction, diffusional defocusing, and inertial focusing. In laminar flow conditions, the diffusional defocusing effect can be neglected, and the effects of inertial focusing can be expressed in terms of the orifice size and Stokes number. Numerical experiments are done for two different orifices, d/D=1/5 and 1/10 and particle diameter d(sub)p=1-10 ㎛. The results for two different orifices can be made into a single curve when a modified Stokes number is used. The inertial focusing effect diminishes when the modified Stokes number becomes smaller than 10(sup)-2.

A Study on Discharge Characteristics from the Nozzle Orifice Attached to a Modularized Fire Extinguishing Gas-agent Container Under Horizontal Position (용기 일체형 가스소화 방식의 오리피스 방사 특성에 관한 연구)

  • 김윤증;윤명오;김상욱
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.59-69
    • /
    • 2002
  • The conventional fire extinguishing gas-agent system has a configuration in which the gas-agent comes out of a cylindrical container having vertically settled shape. However, in this study a horizontally installed container of a piping shape having a cylinder of the same shape with a cylinder valve and a discharge nozzle was used, and the relationship between orifice size of nozzle and discharge rate of gas-agent was investigated through various experiments including the measurement of discharge rate under different ambient-temperature conditions. In such experiments, HCFC Blend A was used without super-pressurization by nitrogen. From this research, it was observed that statutory discharge duration of 10 seconds can be met if the relatively large size of the valve and the nozzle orifice were properly selected.

Combustion Characteristics of Orifice Size of Torch in a CVCC (토치 점화 장치의 오리피스 직경에 따른 연소특성 파악)

  • Kwon, Soon-Tae;Kim, Hyeong-Sig;Choi, Chang-Hyeon;Park, Chan-Jun;Ohm, In-Young
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2010.04a
    • /
    • pp.59-63
    • /
    • 2010
  • Seven different size of orifice were applied in a constant volume combustion chamber for evaluating the effects of torch-ignition on combustion. The initial flame development and flame propagation were analyzed by the mass fraction burn and combustion enhancement rate. The combustion pressures were measured to calculate the mass fraction burn and the combustion enhancement rates. In addition, the flame propagations were visualized by the shadowgraph method for the qualitative comparison. The result showed that the combustion pressure and mass burned fraction were increased when using the torch-ignition device. The combustion enhancement rates of torch-ignition cases were improved in comparison with conventional spark ignition. Finally, the visualization results showed that the torch-ignition induced faster burn than conventional spark ignition due to the earlier transition to turbulent flame and larger flame surface, during the initial stage.

  • PDF

A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle (단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구)

  • Jang, Seong-Ho;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • In the micro turbojet engine less than 350kw power class, it is not easy to find out the good atomization fuel injector with good spray quality. However conceptually, rotating fuel injection system can give high atomization quality by only the centrifugal force of a high speed rotating shaft of the engine without high-pressure fuel pump. With this motivation, we manufactured very small rotating fuel injector of 40 mm diameter and performed under a variety of injection orifices. We measured droplet size, velocity and spray distribution by the PDPA(Phase Doppler Particle Analyzer) system. Also spray was visualized by using high speed camera. From the test results, we could understand that the length of liquid column from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet size(SMD) is decreased with the rotational speeds and is influenced by the diameter of the injection orifice and liquid film thickness.

  • PDF

Aerosol Density Determined Using Micro-orifice Uniform Deposit Impactor and Aerosol Dust Monitors Data at Seoul (다단입자채집기와 입자계수기 자료를 이용한 서울 에어러솔 밀도 계산)

  • Kim, Jeong-Eun;Lee, Hae-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.298-304
    • /
    • 2010
  • In order to calculate the aerosol bulk densities of $PM_{1.0}$ and $PM_{10}$, aerosol mass and number concentrations were measured for the period of December 2008~April 2009. $PM_{1.0}$ and $PM_{10}$ mass concentrations were measured using a cascade impactor (Micro-Orifice Uniform Deposit Impactor, MOUDI) while their volume concentrations were calculated based on number concentrations from an environmental dust monitor (EDM). Normal aerosol size distribution fitting functions were retrieved for number size distribution since aerosols < $2.5{\mu}m$ were measured from the EDM. Strong correlation was found between $PM_{1.0}$ mass and volume concentrations obtained with a $R^2$ of 0.95. The calculated average bulk densities of $PM_{1.0}$ and $PM_{10}$ were $1.97{\pm}0.33g/cm^3$ and $2.15{\pm}0.18g/cm^3$, respectively.

RCGVS Design Improvement and Depressurization Capability Tests for Ulchin Nuclear Power Plant Units 3 and 4

  • Sung, Kang-Sik;Seong, Ho-Je;Jeong, Won-Sang;Seo, Jong-Tae;Lee, Sang-Keun;Keun hyo Lim;Park, Kwon-Sik;Oh, Chul-Sung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.417-422
    • /
    • 1998
  • he Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3&4(UCN 3&4) has been improved from the Yonggwang Nuclear Power Plant Units 3&4(YGN 3&4) based on the evaluation results for depressurization capability tests performed at YGN 3&4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown Phenomena in order to optimize the orifice size of UCN 3&4 RCGVS. Baesd on these analyses results, the RCGVS orifice size for UCN 3&4 has been reduced to 9/32 inch from the l1/32 inch for YGN 3&4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3&4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation.

  • PDF

Spray Characteristics of Air-assisted Vortex Nozzle at Low Pressure Condition (공기보조식 와류 노즐의 저압 분무특성)

  • Kim, Woojin;Subedi, Bimal;Choi, Jang-Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.82-87
    • /
    • 2015
  • A nozzle with vortex generator was used to develop the low pressure nozzle with high atomization performance and the nozzle atomized the liquid by centrifugal shear forces. In order to analyze the atomization characteristics, a shadowgraphy method was used and the measurement of droplet size was performed by using laser diffraction analyzer. The liquid injection pressure was fixed as 0.03 bar which is very low pressure and the gas injection pressures were changed from 0 bar to 2.0 bar. As a result, the breakup was achieved at the air injection pressure of 0.25 bar and over. The nozzle with the orifice diameter of 0.4 mm and the orifice gap of 0.25 mm presented small droplet diameters under 50 at the air injection pressure of 0.75 bar.

Muffler Design Using Transmission Loss Prediction Considering Heat and Flow (열과 유동을 고려한 음장해석을 통한 머플러의 설계)

  • Kim, Hyunsu;Kang, Sang-Kyu;Lim, Yun-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.600-605
    • /
    • 2014
  • Two mufflers for a large-size sedan are suggested aiming (1) sporty-sound and (2) quiet-sound as well as both satisfying low back-pressure and low manufacturing cost. Transmission loss prediction considering heat and flow may increase the accuracy and reduce the development cost in muffler design; thus, GT-power prediction considering heat, flow, and acoustics is utilized. By understanding the fundamentals of flow-acoustic theory in small orifice(hole), an effective muffler design concept is proposed. Vehicle tests show the consistence with predictions for sound; also a back-pressure test bench confirms the advantage in pressure drop for both suggested mufflers. Those suggested mufflers also have advantages in manufacturing cost due to simplicity of the design.

Active Control of Vibration Isolation Table Using Air-spring (공기스프링을 이용한 방진테이블의 능동 제어)

  • An, Chae-Hun;Yim, Kwang-Hyeok;Jin, Kyong-Bok;Rim, Kyung-Hwa
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.565-571
    • /
    • 2007
  • In the process of accurate manufacture and measurement, it is necessarily required to isolate external or internal vibration due to external disturbance and internal actuators. The higher vibration isolation system gets damping around resonance, the better it is generally. This paper analyzes the performance of an existing passive air-spring for vibration isolation table by using experiment and simulation. Optimal design for a passive air spring can be obtained by tuning the size of the orifice. Also design for an active isolation system is carried out by applying PID controller and considering non-linearity of pneumatic characteristics with help of look-up table. We have developed the active vibration isolation table with the better isolation performance.

An Experimental Study on the Spray Characteristics of the Pressure Swirl Atomizer (신회유동을 갖는 압력식 분무기의 분무특성에 관한 연구)

  • Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 1997
  • In this study, spray characteristics of the pressure swirl atomizer have teen investigated. Four atomizers with the different orifice diameter and five tangential ports with the different inlet number were fabricated. For the purpose of the measurement of the mean drop sine, Malvern particle sizer was used. And also discharge coefficient was measured and spray cone angle was measured by using shadow graphy method. As a result when the injection pressure was increased, mean drop size was decreased. And the dominant factor which influence on the spray characteristics of pressure swirl atomizer was orifice diameter.

  • PDF