• Title/Summary/Keyword: Orifice Type

Search Result 214, Processing Time 0.029 seconds

A Study on a Direct-Type Proportional Flow Control Valve Utilizing Flowforces (유체력을 이용한 직동식 비례 유량 조절 밸브에 관한 연구)

  • 배상기;현장환;이정오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.68-75
    • /
    • 1998
  • A one-stage direction and flow control valve was studied theoretically and experimentally. A direction and flow control valve maintains a constant flow rate by changing the spool-orifice area under the variation of valve pressure drop, since the spool-orifice area is varied by the action of flowforces on the spool. A direction and flow control valve has the advantage of simple and low-cost structure compared to a conventional flow control valve utilizing a pressure regulating spool which regulates the pressure drop caused by flow through the metering orifice. The static and dynamic characteristics of a one-stage direction and flow control valve was analyzed. Experimental results on the flow control characteristics of the manufactured valve show satisfactory agreement with simulation results.

  • PDF

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

Vibration Characteristics and its Countermeasure of Orifice Pipe for Reduction Gear Lubrication of Azimuth Thruster (아지무스 추진기의 감속 기어 윤활용 오리피스 파이프 진동특성과 방진대책)

  • Eam, Gitak;Barro, Ronald D.;Lee, Donchool
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.555-558
    • /
    • 2013
  • A type of electric propulsion employed by specialized purpose vessels or offshore is the azimuth thruster. Azimuth thruster application had been increasing recently and resulted to excellent vessel maneuverability. However, this system is very complex and some of its major component being exposed under the seawater level presents difficulty in sealing design. For Polar class icebreaker operating in extreme sea condition, this requires a high level of reliability and safety. In this study, the characteristics of lubricating orifice pipe structural vibration installed at the lower reduction gear were investigated and analyzed through beam analysis theory and comparison of experiments. Propeller excitation and the resonant modes of vibration causing excessive vibration and suitable countermeasures to prevent damage due to vibration fatigue on the pipe are presented.

  • PDF

Spray Characteristics of Impinging Injectors in Crossflows (횡방향 유동에서 충돌형 분사기의 액체제트 분무 특성)

  • Song, Yoonho;Lee, Woongu;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.949-952
    • /
    • 2017
  • Spray characteristics of the impinging injectors in subsonic crossflows were experimentally studied and compared with the plain-orifice injectors. By changing the impingement angle (60, 90, 120) which is the same orifice length to diameter ratio (L/d = 5), spray characteristics were investigated. In the view of the top view from the impinging injectors, as the impingement angle increases, the liquid column breakup length in the y-direction was decreased. On the other hand, when the impinging injector is viewed from the side view, the breakup length in the x direction is smaller than the previous plain-orifice injectors, which mean that the atomizing performance of the impingement-type injector is better than that of the single-hole orifice.

  • PDF

Optimum Design of Dual Orifice Fuel Nozzle (이중 오리피스 연료 노즐 최적설계)

  • Lim, O-Kaung;Choi, Eun-Ho;Kim, Sung-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.407-416
    • /
    • 2007
  • Fuel spray nozzle has a critical effect on combustion characteristics. Mass flow rate and SMD(sauter mean diameter) were selected as design variables by using the experiment data of various types of duplex fuel nozzles for the swirl atomizers. The sensitivity of each design variable on the mass flow rate and SMD was analyzed and the uniformity of mass flow rate was investigated through the shape optimization of duel-orifice-type swirl atomizers. The design variables that have a little effect on the optimum design were excluded using the DOE(design of experiments) method, which enabled the optimization of sensitive design variables on mass flow rate and limit tolerance. The SMD of the research spray nozzle that was used in this study was found to be most similar to that of the calculation results using the Jasuja's SMD relationship. This study showed the specific characteristics of duel orifice type swirl atomizers and the optimization of these kinds of nozzle. This study provided the optimization design of mass flow rate and its allowable tolerance.

Effect of Orifice Type and Number on the Mixing and Flow Characteristics in In-line Mixer (관내 혼화장치의 오리피스 형상과 개수에 따른 혼화 및 유동특성)

  • Jeong, Seon Yong;Chung, Won Sik;Rhi, Seok Ho;Lee, Kye Bock;Lee, Dae Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.6-13
    • /
    • 2017
  • This study examines the effect of the type and number of orifices in an in-line mixer to improve the mixing performance and pressure loss. Recently, in-line non-power-consuming mixers have been increasingly used to complement mechanical mixers, which have a long dwell time, noise, excessive energy consumption, and high maintenance costs. An in-line mixer with an orifice for efficient mixing in water treatment was examined by numerical analysis using the commercial code FLUENT. The flow characteristics of pressure loss and velocity distribution within the mixer and the mixing efficiency were compared with and without the orifices. The CFD results show that the mixing efficiency was improved, but the pressure loss was increased by the in-line mixer with an orifice. A sensitivity study was also done on the principal parameters.

Development of Optimal Design Program of Air-Coal Pneumatic Conveying System to Enhance Combustion Efficiency (연소효율 향상을 위한 공기-미분탄 수송배관장치의 최적화 설계 프로그램 개발)

  • Ku, Jae-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.7-14
    • /
    • 2009
  • This study describes to analyze the pressure drop characteristics for the air-particle flow in pneumatic coal powder conveying system and to proper design of the orifice located in the system to enhance combustion efficiency in furnace of the coal-fired power plant. Usually the system consists of the straight type pipe, the curved type pipe and the elbow, which cause increase of the pressure drop. In this study, the pressure drop arised in the system with straight and curved type pipes is analyzed with interactions of motion of air flow and particles. It is realized that total pressure drop increases with increasing of the pipe length and the angle of curved type pipe due to friction loss of air and particles in the system. The program for analysis of the pressure drop and optimum design of the orifice size for air flow control in the system is developed. The result is also compared with the existing system.

  • PDF

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

Development of an Electrostatic Drop-On-Demand inkjet Device for Display Fabrication Process

  • Son, Sang-Uk;Choi, Jae-Yong;Lee, Suk-Han;Kim, Yong-Jae;Ko, Han-Seo;Kim, Hyun-Cheol;Byun, Do-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.655-659
    • /
    • 2006
  • This paper presents a novel electrostatic drop-on-demand inkjet device featured by a MEMS fabricated pole-type and hole-type nozzle with tube shaped orifice and investigates the feasibility of applying the inkjet device to display fabrication process. The electric voltage signal applied to the ring shaped upper electrode plate, against the hole-shaped ground or pole-shaped ground, referred here pole-type and hole-type nozzle respectively, allows ejection of small droplet to take place: That is, a tiny droplet is taken away from the peak of the mountain shaped liquid meniscus formed at the nozzle orifice. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable micro-dripping mode of droplet ejection for a wider range of applied voltages and of liquid viscosities. This demonstrates a feasibility of electrostatic drop-on-demand inkjet device as a disruptive alternative to conventional print heads such as thermal bubble or piezoelectric inkjet heads.

  • PDF

A Three-Dimensional Finite Element Analysis of Hot Extrusion through Square Dies by automatic remeshing Technique with modular concept (자동 단위체 격자재구성법을 이용한 열간 평금형압출의 3차원 유한요소해석)

  • 강연식;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.64-73
    • /
    • 1994
  • An updated Lagrangian finite element analysis with automatic remeshing scheme is applied to the three-dimensional hot extrusion through landless square dies. In the remeshing procedure, it is very difficult that the meshes are generated automatically with consideration of physical characteristics. In the presented study, the mesh generation is accomplished by modular concept. The generated meshes by modular concept have advantages, especially for three-dimensional problems, such as economized computational time and consideration of physical characteristic. In the problem, orifice shapes of square die are divided into two for the extrusion of solid sections. The orifice adaptive modules are developed for each type and the numerical examples are carried out for each type.

  • PDF