• Title/Summary/Keyword: Orifice Shape

Search Result 102, Processing Time 0.028 seconds

An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System (인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구)

  • Kwon, Ki-Chul;Lee, Eun-Sang;Park, Sang-Min;Kang, Shin-Jae;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

A Study on the Effect of the Orifice Shape on Oil Outflow from a Damaged Ship (사고 선박 손상부 형상이 기름 유출량에 미치는 영향 연구)

  • Park, Il-Ryong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.620-631
    • /
    • 2022
  • This paper shows the numerical prediction of the change in oil outflow rate according to the orifice shape of a damaged ship by using the computational fluid dynamics (CFD) analysis method. It also provides discharge coefficients for various orifice shapes to be used in theoretical prediction approaches. The oil outflow from the model ship was analyzed using a multiphase flow method under the condition that the Froude and Reynolds number similitudes were satisfied. The present numerical results were verified by comparing them with the available experimental data. Along with the aspect ratio of the orifice and the wall thickness of the cargo tank, the effects of the orifice shapes defined by mathematical figures on the oil outflow were investigated. To consider more realistic situations, the investigation of the ef ect of the crushed iron plate around the damaged part was also included. The numerical results confirmed the change in oil outflow time for various shapes of the damaged part of the oil tank, and discharge coefficients that quantify the viscous effects of those orifice shapes were extracted. To verify the predicted discharge coefficients, they were applied to an oil spill estimation equation. As a result, a good agreement between the CFD and theoretical results was obtained.

A Numerical analysis on the pressure drop of the flow field past a two-staged orifice in a rectangular duct (사각덕트 내 이단 오리피스를 지나는 유동의 압력강하에 대한 수치해석)

  • Song, Woo-Yeol;Kim, You-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2747-2752
    • /
    • 2007
  • A numerical study has been performed on the flow past a two-staged orifice in a rectangular duct. The flow field including the recirculation region behind the orifice was investigated and the pressure drop was calculated. Water was used as a working fluid and the flow was treated as the turbulent flow, of which the Raynolds number was 6000. The main parameters for the pressure drop and the recirculation region were the orifice's inclined angle against the duct, the interval between two orifices, the shape of the orifice's hole having the same area, and the change of the hole position at the same interval. The variation of the flow field was investigated with each parameter. Consequently, it was found that the most dominant parameter influencing the drop of the pressure was the change of the hole position at the same interval between orifices. Especially when the interval between orifices was narrow and the relative position the holes was changed, its effect to the flow field was shown most drastically as a result of this study. The SIMPLER algorithm with FLUENT code was employed to analyze the flow field.

  • PDF

The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors (오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성)

  • Jung, K.H.;Khil, T.O.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

Pressure Measurement in Double Inlet Pulse Tube Refrigerator (이중 입구형 맥동관 냉동기에서의 압력 파형 측정)

  • 정제헌;남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.390-396
    • /
    • 2004
  • A double-inlet pulse tube refrigerator was fabricated as a U-shape with $\Phi$19.0 mm${\times}$125 mm regenerator packed by #200 stainless steel mesh and $\Phi$12.7 mm${\times}$125 mm pulse tube. A pressure sensor was installed at the inlet of the regenerator and a differential pressure sensor was installed across the bypass. Amplitude of the pulsating pressure was independent of the opening of the orifice and the bypass valves. Helium flow through the orifice and the bypass was calculated based on the measured pressure. Energy loss through the orifice and the bypass was evaluated with the measured pressure and the calculated helium flow rate. The energy loss, which is equivalent to the refrigeration capacity at the cold end of the ideal pulse tube refrigerator, was mainly generated through the orifice. It was proportional to the opening of the orifice valve, but the real refrigerator displayed the best performance at the optimized opening of the orifice valve. This optimized performance of the tested pulse tube refrigerator can be explained by additional refrigeration losses. As an example, the shuttle heat transfer loss of the pulse tube was calculated from the measured experimental data.

The Spray Characteristics of Jet in Crossflow with the Injector Shapes (노즐 형상에 따른 Jet in Crossflow의 분무 특성)

  • Yoon, Hyun-Jin;Lim, Young-Heon;Hong, Jung-Goo;Lee, Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.438-444
    • /
    • 2010
  • The spray characteristics of jet in crossflow (JICF) to improve the atomization and mixing characteristics of liquid Jet, while minimizing the impact on crossflow, were studied experimentally. By varying the temperature, velocity, pressure of crossflow and the speed, pressure of liquid Jet, the spray boundary (outer boundary, inner boundary) with the change of crossflow and liquid jet momentum ratio (q) were measured and led the experimental formula, compared with the results of previous work. Specifically, when the jet penetration with the shape of injector were measured, in the case of dual orifice Injector, under the influence of front orifice, the jet penetration of back orifice was improved approximately 18% ($L_h$ = 4 mm), compared with single orifice injector.

  • PDF

Recent Topics on Injection and Combustion in High Speed Flow (Keynote)

  • Tomioka, Sadatake
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.3-8
    • /
    • 2009
  • Wall flush mounted injector with various orifice shape and injection conditions, were examined to enhance jet penetration and mixing in supersonic cross flow, in view of application to air-breathing accelerator vehicle. Orifice shapes with high aspect ratio were found to preferable for better penetration in the cold flow, and in the reacting flow for scramjet-mode combustion conditions. However, the effectiveness of the high aspect ratio was diminished in the dual-mode combustion conditions. Supersonic injection was applied to the high aspect ratio orifice, and further increase in penetration was observed in the cold and reactive flow for scramjet-mode combustion conditions, however, mixing enhancement due to mixing layer / pseudo-shock wave system interaction was dominant in the dual-mode combustion conditions. Difficulty in attaining ignition in the case with the high aspect ratio orifice was encountered during the combustion tests.

  • PDF

A STUDY ON THE ANAOMY OF THE PULP CHAMBER FLOOR OF THE PERMANENT MAXILLARY FIRST MOLAR (상악(上顎) 제일대구치(第一大臼齒) 치수저(齒髓底)의 해부학적(解剖學的) 고찰(考察))

  • Kwon, Hyuk-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.6 no.1
    • /
    • pp.105-107
    • /
    • 1980
  • A total of 125 extracted maxillary first molars were used to study the configuration of the floor of the pulp chamber. The specimens were ground and the pulp chamber was examined with a magnifying glass and explored with sharp explorer. The study showed the shape of the pulp chamber, number of root canals, and type of canal orifice. The results were as follows; 1. In so far as observing the shape of the pulp chamber of the teeth, 50.4% of the teeth were trapezoid, 20.8% were inverted trapezoid, 18.4% were rectangle and 10.4% were triangle shape. 2. 71.2% of the specimens have 3 root canal orifices, and 28.8% have 4 root canal orifices. 3. 71.2% of the specimens have 1 mesiobuccal canal orifice, 23.2% have 2 mesio-buccal canal orifices joined by a groove, and 5.6% have 2 mesio-buccal canal orifices seperated each other.

  • PDF

A Study on the Viscous Damping Effect According to the Shape of the Inclined OWC Chamber Skirt

  • Jung, Hyen-Cheol;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, numerical analysis and experiments were performed to analyze the viscous damping effect according to the shape of the chamber skirt of the breakwater-linked inclined oscillating water column wave energy converter. Experiments were conducted using a two-dimensional mini wave tank and verified by comparing the results of a computational fluid dynamics numerical analysis. Pointed and rounded skirts were modeled to compare the effect of viscous damping when incident waves enter the chamber, and the difference in the displacement of the water surface in the chamber was compared according to the wave period for the two skirt shapes. The wave elevation in the chamber in the rounded-skirt condition was larger than the pointed-skirt condition in all wave periods, which was approximately 47% greater at 0.9 s of the incident wave period. Therefore, extracting the maximum energy through the optimal orifice is possible while minimizing the energy attenuation in the rounded-skirt condition.

Steady Characteristic Change of Hydraulic Control Orifice according to Opening and Configuration Parameters (수력제어용 오리피스의 개도 및 형상 변수에 따른 정상저항 특성의 변화)

  • Kim, Sang-Min;Kim, Geon-Woong;Ko, Tae-Ho;Kim, Hyung-Min;Yoon, Woo-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.329-334
    • /
    • 2009
  • The Study of steady performance of orifice must be precede before study of dynamic characteristics with configuration change. So, orifice performance with change of diameter ratio, thickness, expansion and angle predicted by CFD. The analysis algorithm is SIMPLEC. And PRESTO, QUICK scheme is used for dicretization. The $k-{\omega}$ STS turbulent model also used. The discharge coefficient is rapidly increased with increasing of diameter ratio and slowly decreased after rapidly increasing with orifice thicken. In case of expansion angle, the discharge coefficient is the smallest at $45^{\circ}$ of the angle.

  • PDF