• Title/Summary/Keyword: Orientation correction

Search Result 80, Processing Time 0.027 seconds

A study on the correction of a position and orientation of the chip using DSP in the 2nd plane (DSP를 이용한 2차원 평면에서 chip의 위치와 자세보정에 관한 연구)

  • 유창목;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1316-1319
    • /
    • 1996
  • This paper proposes the algorithm for the correction of a position and orientation of small object such as chip in the precise construction process. In the past, it is general to correct position and orientation of object using human sight and simple vision sensors. But recently, researches using image processing devices have been studied to improve the corrective precision of a position and orientation of object. In this piper, maximum-axis moment and p-theta algorithm are used to correct the position and orientation. Algorithm of maximum-axis moment is widely applied to hetero-object except being applied to a perfect rectangle. This is reason that moments of the X and Y-axis are equal. Therefore, being the shape of a perfect rectangle, the object is applied to other algorithm. In the light of time problem, real-time control is as important as correction of object. To solve it, we use the DSP(Digital Signal Processing) which is far more fast than PC.

  • PDF

Correction Method for Orientation of Cylindrical Moving Part in Micro-Positioning Device (정밀 위치 결정 기구에서 원통형 구동부의 자세 보정)

  • Jo, Nam-Gyu;Kim, Do-Hyeon;Gwon, Gi-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, a new technique and theory are proposed which correct the orientation (inclination of a vertical axis) of a cylinder in vertical-micro positioning device. An algorithm for determining the orientation of the cylinder with a pair of displacement sensor units is derived and two types of the correction methods are described. To assess the performance and efficiency of the developed correction technique, the compensation errors originated from the correction algorithm and the machined characteristics of cylinder surface are evaluated from the geometrical considerations and the statistical techniques. Based upon the evaluation results, the maximum compensation error is estimated for the orientation of cylinder and the optimum correction technique is derived.

  • PDF

Influences of hygrothermal environment and fiber orientation on shear correction factor in orthotropic composite beams

  • Soumia Benguediab;Fatima Zohra Kettaf;Mohammed Sehoul;Fouad Bourada;Abdelouahed Tounsi;Mohamed Benguediab
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.151-165
    • /
    • 2023
  • In this study, a simple method for the determination of the shear correction factor for composites beam with a rectangular cross section is presented. The plane stress elasticity assumption is used after simplifications of the expression of the stress distribution in the beam. The different fiber orientation angle and volume fraction are considered in this work. The studied structure is subjected to various loading type (thermal and hygrothermal). The numerical results obtained show that there is a dependence of the shear coefficient on the orientation of the fibers. The evolution of the shear correction factors depends not only on the orientation of the fibers and also on the volume fraction and the environment. the advantage of this developed formula of the shear correction factor is to obtain more precise results and to consider several parameters influencing this factor which are neglected if the latter is constant.

Simultaneous path tracking and orientation control for three-wheeled omni-directional robots (삼륜형 전방향 이동로봇을 위한 경로추종 및 방위제어)

  • Choi, Han-Soo;Kim, Dong-Il;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • Conventional path tracking methods designed for two-wheeled differential drive robots are not suitable for omni-directional robots. In this study, we present a controller which can accomplish more accurate path tracking and orientation correction by exploiting the unconstrained movement capability of omni-directional robots. The proposed controller is proven to be stable using a Lyapunov stability criterion. Various experiments in real environments show that performance of path tracking and orientation correction has improved in the proposed controller.

Orientation Correction of a Cylinder for Surface-Profile Measurement (원통 축 방향의 표면거칠기 측정을 위한 시료의 자세 보정)

  • 조남규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.108-120
    • /
    • 1996
  • A new technique and theory are proposed which correct orientation of a cylinder to perform a reliable measurement of the surface profile. We analyze characteristics of machined surfaces, e.g., ground, lapped and turned surfaces. Based upon the results. the optimum correction technique is derived by the statistical method. To verify the techinques, measurements are carried out by using the contact stylus profilometer on a controllable table. The measurement shows that surface information of cylinders can be acquired with high accuracy.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: II. Rietveld Refinement of Tungsten Liner using Neutron Diffraction Data

  • Kim, Yong-Il;Lee, Jeong-Soo;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.240-244
    • /
    • 2000
  • The three-dimensional orientation distribution function of a conical shaped tungsten liner prepared by the thermo-mechanical forming process was analyzed by 1.525$\AA$ neutrons to carry out the Rietveld refinement. The pole figure data of three reflections, (110)(220) and (211) were measured. The orientation distribution functions for the normal and radial directions were calculated by the WIMV method. The inverse pole figures of the normal and radial directions were obtained from their orientation distribution functions. The Rietveld refinement was performed with the RIETAN program that was slightly modified for the description of preferred orientation effect. We could successfully do the Rietveld refinement of the strongly textured tungsten liner by applying the pole density of each reflection obtained from the inverse pole figure to the calculated diffraction pattern. The correction method of preferred orientation effect based on the inverse pole figures showed a good improvement over the semi-empirical texture correction based on the direct usage of simple empirical functions.

  • PDF

Feasibility of Using an Automatic Lens Distortion Correction (ALDC) Camera in a Photogrammetric UAV System

  • Jeong, Hohyun;Ahn, Hoyong;Park, Jinwoo;Kim, Hyungwoo;Kim, Sangseok;Lee, Yangwon;Choi, Chuluong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • This study examined the feasibility of using an automatic lens distortion correction (ALDC) camera as the payload for a photogrammetric unmanned aerial vehicle (UAV) system. First, lens distortion for the interior orientation (IO) parameters was estimated. Although previous studies have largely ignored decentering distortion, this study revealed that more than 50% of the distortion of the ALDC camera was caused by decentering distortion. Second, we compared the accuracy of bundle adjustment for camera calibration using three image types: raw imagery without the ALDC option; imagery corrected using lens profiles; and imagery with the ALDC option. The results of image triangulation, the digital terrain model (DTM), and the orthoimage using the IO parameters for the ALDC camera were similar to or slightly better than the results using self-calibration. These results confirm that the ALDC camera can be used in a photogrammetric UAV system using only self-calibration.

Mathematics Model of Space Backside Resection Based on Condition Adjustment

  • Song, Weidong;Wang, Weixi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1403-1405
    • /
    • 2003
  • This paper focuses on the image correction under few GCPs, utilizes the collinearity equation, and builds up this mathematics model of space backside resection based on condition adjustment. Then calculates the adjusted elements of exterior orientation by iteration algorithm, and evaluates the precision. And demonstrates the high-precision, affection and wide-supplying-perspective of this model.

  • PDF