• Title/Summary/Keyword: Orientation Angle

Search Result 638, Processing Time 0.025 seconds

Vibration Analysis of Rotating Cantilever Plates with Arbitrary Orientation Angle (임의의 자세를 갖는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1331-1337
    • /
    • 2003
  • Linearized equations of motion for the vibration analysis of rotating cantilever plates with arbitrary orientation angle are derived in the present work. Two in-plane stretch variables are introduced to be approximated. The use of the two in-plane stretch variables enables one to derive the equations of motion which include proper motion-induced stiffness variation terms. The equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating cantilever plates are investigated through numerical study. The natural frequency loci veering along with the associated mode shape variations, which occur while the rotating speed increases, are also presented and discussed.

Evaluation of Bending Characteristics for Carbon FRP Structure having Circle Cross-section (원통 CFRP 구조재의 굽힘 특성 평가)

  • Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.202-206
    • /
    • 2011
  • Works on the strength and stiffness in the structural members are carried out widely with various material and cross-sections with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. So, Light weight of member structures is necessary for the high performance and various functions. In this study, the CFRP flat and circular member was manufactured by CFRP prepreg sheet in autoclave. Carbon FRP is an anisotropy material whose mechanical properties change with its fiber orientation angle, so this study apply to the effects of the fiber orientation angle on the bending characteristics of the member. Each CFRP flat and circle are compared by strength and stiffness.

A Study on the Molecular Orientation of Polyamic Acid Alkylamine Salt Langmuir-Blodgett Films (Polyamic Acid 알킬아민 염 랭뮤어-블로젯막의 분자 배향에 관한 연구)

  • 정순욱;임현성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.53-56
    • /
    • 2000
  • Langmuir-Blodgett(LB) technique is the best candidate for the future molecular electronic devices. But, these molecular thin film devices require the bulk properties that are influenced by the molecular orientations. So, this is of current interest in molecular electronic device fabrications of new materials. In this study, quantitative evaluation of molecular orientation in LB films of PAAS was performed by comparing the absorption intensities of the FT-IR transmission and reflection-absorption spectra and the polarized UV/visible absorption spectra. It was found that the polar angle( $\theta$ ) of the dipole moment is about 68$^{\circ}$ and the tilting angle of the alkyl chain is about 11.5$^{\circ}$

  • PDF

The Comparison of Kinematic Data of the Body Orientation in Sitting Position to Adapt Dynamically Changing Angle of the Base of Support in Stroke Patients and Healthy Adults (뇌졸중 환자와 정상 성인의 앉은 자세에서 지지면의 동적 각도 변화에 적응하는 신체 정위의 운동형상학적 비교)

  • Song, In-Su;Choi, Jong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3513-3520
    • /
    • 2012
  • This study aimed to investigate the difference of the body orientation ability in sitting position to adapt to dynamically changing angle of the base of support in stroke patients and Healthy adults. The angle between vertical and head and trunk in 12 stroke patients (6 male and 6 female) and 12 healthy adults (6 male and 6 female) were measured by video motion analysis system. The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when increase the angle of non-dominant side(p<.05). The head and trunk angle between stroke patients and healthy adults in sitting position were significantly different when decrease the angle of non-dominant side(p<.05). The head angle between stroke patients and healthy adults in sitting position was significantly different(p<.05), but the trunk angle was not significantly different when decrease the angle of dominant side(p>.05), Stroke patients compared to healthy adults had more deficits in their body orientation ability in sitting position to adapt to dynamically changing angle of the base of support. This finding may help to understand postural control deficits more clearly in stroke patients in sitting position.

Simulation and Evaluation of Bending Strength of FRP for Insulator According to Winding Angle (와인딩 각도에 따른 절연용 FRP의 굽힘강도 시뮬레이션 및 평가)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.436-439
    • /
    • 2003
  • FRP has been used widely for insulator. FRP consists of fiber and resin. The fiber contributes the high strength and modulus to the composite. The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. In this study, FRP was made unidirectionally by pultrusion method. Outer part of the FRP was made by filament winding method to give fiber orientation to the FRP. And outer part of FRP was also made by wrapping method. The bending strength and bending stresses of FRP rods were simulated according to the winding orientation of glass fiber. The bending strength of FRP was also evaluated. The results of simulation and evaluation were compared each other to investigate main stresses which affect the fracture of FRP. The main stresses which had a great effect on the strength of FRP were shear stresses. Bending strength of the FRP was different with the winding angle. The bending strength of $15^{\circ}$ winded FRP was the highest.

  • PDF

SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites

  • Na, Kun;Park, Han-Soo;Won, Hong-Youn;Lee, Jong-Kwan;Lee, Kwang-Hee;Nam, Joo-Young;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.499-503
    • /
    • 2006
  • This report presents a new technical approach for evaluating the fiber orientation of composites using small-angle light scattering (SALS). Glass fiber (GF)/polypropylene (PP) composites with different fiber orientations were prepared by drawing compression-molded specimens. The drawn samples were remelted and then annealed at $150^{\circ}C$ in order to induce a crystalline structure on the fiber surface, and then underwent SALS analysis. The samples showed a combination of circular and streak patterns. The model calculations demonstrated that the number of nuclei on the fiber surface and the thickness of the transcrystalline layer affected the sharpness and intensity of the streak pattern. In addition, the azimuthal angle of the streak pattern was found to be dependent on the direction of the transcrystalline layer, which correlated with the fiber direction. This correlation suggests that the fiber orientation in the composites can be easily evaluated using SALS.

A study on effects of the fiber orientation and point angle on drilling characteristics of carbon fiber epoxy composite materials (탄소섬유 에폭시 복합재료의 드릴링 특성에 있어 섬유 배열방향과 선단각의 영향에 관한 연구)

  • Kim, Hyeong C.;Lee, Woo Y.;Namgung, Suk.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 1997
  • The drilling experiment of carbon fiber epoxy composite material with WC-drill has been done under the various cutting conditions in order to minimize the problems occurred in the material while being drilled. It has been confirmed by a frequency analysis of the cutting force signals that the variation of cutting force resulted from the periodic variation of the angle between the ortating drill and the stacking angle of the carbon fiber. By the drilling experiment with several drills having different point angles, the drilling char- acteristics, which show the relations between the change in the point angle and cutting force or external surface condition, were analyzed.

  • PDF

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Jung, Yunwoo;Lee, Nalae;Kim, Jonghoon;Im, Yeong Ji;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.151-155
    • /
    • 2015
  • The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

The Relationship between Photosynthetic Active Radiation and Leaf Orientation (光合成有效放斜와 葉向과의 關係)

  • Chang, Nam-Kee;Heui-Baik Kim
    • The Korean Journal of Ecology
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1985
  • Photosynthetically Active Radiation (PAR) affects the growth of plants as well as their photosynthetic rates. A mathematical model for intercepted solar radiation on the tilted leaf with any azimuth angle was established and the leaf orientation in which receives the maximum solar radiation was determined each month, during the growing season, and for an year. PAR was maximized at the leaf elevation of 50。~60。 in the winter, at that of 20。~40。. On the whole the leaves of tilt angle 0。~40。 received much radiation comparing with those of other tilt angles. The theoretical tendencies were compared with the distribution of leaf orientation measused practically. The average leaf elevation of maple tree was 17.0。$\pm$12.0。, and that of ginkgo was 29.8。$\pm$16.0。. Several results from other literatures support our suggestion that cumulative effevct of the relationships between surface normal vector and a vector pointing in the direction of the radiation determine the leaf orientation.

  • PDF