• 제목/요약/키워드: Organic wastewater compounds

검색결과 185건 처리시간 0.03초

활성탄(活性炭) 흡착(吸着)에 의한 취기유발물질(臭氣誘發物質) 제거(除去)에 관(關)한 연구(硏究) -GEOSMIN, 2-MIB를 중심으로- (A Study on the Removal of Taste and Odor Compounds by Activated Carbon Adsorption)

  • 김한승;권봉기;박중현
    • 상하수도학회지
    • /
    • 제8권2호
    • /
    • pp.12-24
    • /
    • 1994
  • The occurrence of objectionable tastes and odors in drinking water is a common and widespread problem. The most troublesome odors are usually those described as muddy or earthy-musty. Two organic compounds which have been implicated as the cause of earthy-musty odor problems in water are geosmin and 2-Methylisoborneol. These earthy-musty organics have been shown to be metabolites of actinomycetes and blue green algae. The purpose of this paper is to describe adsorbability in removing these two oder causing compounds(geosmin and 2-MIB) upon various conditions like pH variation, adding humic acid and different activated carbon. The conclusion of this study are as followings. In batch test, carbon dosage is 10mg/100ml for geosmin and 15mg/100ml for 2-MIB. Both were in equilibrium state after 60 hours. In model simulation, F-P model described experiment data and modelling data appropriately in geosmin but F-S model not. In case of 2-MIB, models didn't describe relation between experiment and modelling data well. Two causative agents of earthy-musty odor compounds, geosmin and 2-MIB, are strongly adsorbed by activated carbon either coconut or brown. There appears to be no effect of pH (3,7,9) on adsorption of these two organics. Activated carbon proved to be more effective for removing geosmin than for removing 2-MIB. When activated carbon is. used in removing these two organics, the removal of these appeared to be adversely affected by back ground organic compounds, such as humic substances, due to competitive adsorption.

  • PDF

Treatment of Oily Wastewater with WPO and CWO

  • Han, Mei;Chen, Yihui;He, Fang;Yu, Li
    • 대한화학회지
    • /
    • 제58권1호
    • /
    • pp.68-71
    • /
    • 2014
  • Petroleum refining unavoidably generates large volumes of oily wastewater. The environmentally acceptable disposal of oily wastewater is a current challenge to the petroleum industry. Nowadays, more attentions have been focused on the treatment techniques of oily wastewater. Oily wastewater contained highly concentrated and toxic organic compounds. Wet peroxide oxidation (WPO) and catalytic wet oxidation (CWO) were applied to eliminate pollutants to examine the feasibility of the WPO/CWO of oily wastewater. The results indicated that more than 80% chemical oxygen demand (COD) removal from oily wastewater was achieved with CWO. Homogenous catalyst, $NaHCO_3$ and $Na_2CO_3$ and NaOH showed effective removal for pollutants in oily wastewater. Greater than 90% COD removal was achieved with WPO. It was concluded that WPO was a far more effective process for oily wastewater.

섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구 (A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber)

  • 탁성제;서성원;김성순;김진만
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

Performance evaluation of organic matter adsorption from actual graywater using GAC: OrbitrapTM MS and optimization

  • Ligaray, Mayzonee;Kim, Minjeong;Shim, Jaegyu;Park, Jongkwan;Cho, Kyung Hwa
    • Membrane and Water Treatment
    • /
    • 제10권6호
    • /
    • pp.471-484
    • /
    • 2019
  • The complex combination of organic contaminants in the wastewater made water treatment challenging; hence, organic matter in water bodies is usually measured in terms of organic carbon. Since it is important to identify the types of compounds when deciding suitable treatment methods, this study implemented a quantitative and qualitative analysis of the organic matter content in an actual graywater sample from Ulsan, Republic of Korea using mass spectroscopy (MS). The graywater was treated using adsorption to remove the organic contaminants. Using orbitrap MS, the organic matter content between an untreated graywater and the treated effluent were compared which yielded a significant formula count difference for the samples. It was revealed that CHON formula has the highest removal count. Isotherm studies found that the Freundlich equation was the best fit with a coefficient of determination ($R^2$) of 0.9705 indicating a heterogenous GAC surface with a multilayer characteristic. Kinetics experiments fit the pseudo-second order equation with an $R^2$ of 0.9998 implying that chemisorption is the rate-determining step between the organic compounds and GAC at rate constant of $52.53g/mg{\cdot}h$. At low temperatures, the reaction between GAC and organic compounds were found to be spontaneous and exothermic. The conditions for optimization were set to achieve a maximum DOC and TN removal which yielded removal percentages of 94.59% and 80.75% for the DOC and TN, respectively. The optimum parameter values are the following: pH 6.3, 2.46 g of GAC for every 30 mL of graywater sample, 23.39 hrs contact time and $38.6^{\circ}C$.

Fouling and cleaning of reverse osmosis membrane applied to membrane bioreactor effluent treating textile wastewater

  • Srisukphun, Thirdpong;Chiemchaisri, Chart;Chiemchaisri, Wilai;Thanuttamavong, Monthon
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.45-51
    • /
    • 2016
  • Membrane bioreactor (MBR) and reverse osmosis (RO) membrane system was applied to the treatment and reclamation of textile wastewater in Thailand. An experiment was carried out to determine the fouling behavior and effect of anti-scalant and biocide addition to flux decline and its recovery through chemical cleaning. The RO unit was operated for one month after which the fouled membranes were cleaned by sequential chemical cleaning method. RO flux was found rapidly declined during initial period and only slightly decreased further in long-term operation. The main foulants were organic compounds and thus sequential cleaning using alkaline solution followed by acid solution was found to be the most effective method. The provision of anti-scalant and biocide in feed-water could not prevent deposition of foulant on the membrane surface but helped improving the membrane cleaning efficiencies.

Nitrate Removal of Flue Gas Desulfurization Wastewater by Autotrophic Denitrification

  • Liu, L.H.;Zhou, H.D.;Koenig, A.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.46-52
    • /
    • 2007
  • As flue gas desulfurization (FGD) wastewater contains high concentrations of nitrate and is very low in organic carbon, the feasibility of nitrate removal by autotrophic denitrification using Thiobacillus denitrificans was studied. This autotrophic bacteria oxidizes elemental sulfur to sulfate while reducing nitrate to elemental nitrogen gas, thereby eliminating the need for addition of organic compounds such as methanol. Owing to the unusually high concentrations of dissolved salts $(Ca^{2+},\;Mg^{2+},\;Na^+,\;K^+,\;B^+,\;SO_4^{2-},\;Cl^-,\;F^-,)$ in the FGD wastewater, extensive laboratory-scale and pilot-scale tests were carried out in sulfur-limestone reactors (1) to determine the effect of salinity on autotrophic denitrification, (2) to evaluate the use of limestone for pH control and as source of inorganic carbon for microbial growth, and, (3) to find the optimum environmental and operational conditions for autotrophic denitrification of FGD wastewater. The experimental results demonstrated that (1) autotrophic denitrification is not inhibited up to 1.8 mol total dissolved salt content; (2) inorganic carbon and inorganic phosphorus must be present in sufficiently high concentrations; (3) limestone can supply effective buffering capacity and inorganic carbon; (4) the high calcium concentration may interfere with pH control, phosphorus solubility and limestone dissolution, hence requiring pretreatment of the FGD wastewater; and, 5) under optimum conditions, complete autotrophic denitrification of FGD wastewater was obtained in a sulfur-limestone packed bed reactor with a sulfur:limestone volume ratio of 2:1 for volumetric loading rates up to 400g $NO_{3^-}N/m^3.d$. The interesting interactions between autotrophic denitrification, pH, alkalinity, and the unusually high calcium and boron content of the FGD wastewater are highlighted. The engineering significance of the results is discussed.

  • PDF

활성슬러지법에 의한 고농도 중화학공장 폐수처리에 관한 연구 (Bench-Scale Evaluation of the Activated Sludge Process for Treatment of a High-Strength Chemical Plant Wastewater)

  • 조영하
    • 한국환경보건학회지
    • /
    • 제19권3호
    • /
    • pp.1-16
    • /
    • 1993
  • This paper describes an investigation to determine whether the activated sludge (AS) process could be used for the treatment of wastewater at the Union Carbide Coporation (UCC) plant in Seadrift, Texas. This plant presently utilizes a waste stabilization pond (WSP) system for treatment of the wastewater. The treatment system consists of an in-plant primary WSP and two off-plant WSPs (secondary and tertiary WSPs), run in series. The total hydraulic detention time of the WSP system is approximately 150 days. Several laboratory-based treatability studies have been conducted to evaluate the performace of the WSP system and the degradability of specific chemical compounds. From an additional study, it was determined that the WSP system was stressed and occasionally operating near the limit of its treatment capacity. The existing primary WSP plays an important role in the overall treatmemt system, because it not only functions as a pH and organic-strength equalization basin, but also serves as a "preconditioning" basin by fermenting high strength organic wastes to volatile organic acids for subsequent degradation in the escondary WSP. However, in view of pending RCRA legislatin conerning the "proposed organic toxicity characteristics limits" (40 CFR Part261: Federal Register, July, 1988), it is possible that the primary WSP will have to be abandoned in favor of alternative treatment options. Therefore the main purpose of this study was to perform activated sludge treatability evaluations for the development of an alternative to the existing primary WSP treatment ststem. In addition, another purpose was to determine the degradability of bis(2-chloroethyl)ether (Chlorex or CX) and benzene(BZ) in the activated sludge process. The presence of these two chemicals in the wastewater of the plant prompted the question of whatedether they could be degraded in an activated sludge system.

  • PDF

오염물질 분해를 위한 광촉매 분리막: 총설 (Photocatalytic Membrane for Contaminants Degradation: A Review)

  • 라비아 카갛니;라즈쿠마 파텔;김종학
    • 멤브레인
    • /
    • 제32권1호
    • /
    • pp.33-42
    • /
    • 2022
  • 성장하는 산업화는 심각한 수질 오염으로 이어진다. 폐수로 배출되는 약품과 섬유산업에서 나오는 유기배출물은 환경과 생명에게 악영향을 미친다. 항균치료에 사용되는 항생제가 폐수에 존재하면 인체에 매우 해로운 약제 내성균의 성장을 야기하게 된다. 섬유산업에서 사용되는 유기염료 분자의 제조에는 다양한 유기 저분자가 사용된다. 이러한 분자들은 인쇄 및 염색 산업의 폐수 배출물에 존재하여 분해가 잘 이루지지 않는다. 이러한 문제들을 해결하기 위해 광분해성 촉매를 분리막에 도입하고 폐수를 처리한다. 이 과정을 통해 유기 분자는 광분해되며 동시에 분해된 화합물들은 분리막을 통과하여 분리된다. 이산화티타늄(TiO2)은 뛰어난 광촉매 역할을 하는 반도체이다. 다른 전이 금속 산화물과 화합물을 만들고 고분자 막에 도입하여 광촉매 능력을 증가시킨다. 본 총설에서는 광촉매성 분리막에 의한 염료 및 약물 분자의 분해에 대해 논의한다.

Yarn dyed wastewater treatment using hybrid electrocoagulation-Fenton method in a continuous system: Technical and economical viewpoint

  • Gunawan, Denny;Kuswadi, Vincensius Billy;Sapei, Lanny;Riadi, Lieke
    • Environmental Engineering Research
    • /
    • 제23권1호
    • /
    • pp.114-119
    • /
    • 2018
  • Yarn dyed wastewater has to be treated prior to disposal into the water bodies due to its high content of harmful organic compounds. In this study, the performance of Chemical Oxygen Demand (COD) removal and kinetic rate constant are investigated via hybrid electrocoagulation-Fenton in a continuous system using wastewater discharged from a yarn dyed industry in Surabaya city. The wastewater was treated in a batch mode using electrocoagulation to reduce Total Suspended Solid, followed by Fenton method in a continuous system to reduce COD level. Various Fe(II) feeding modes, molar ratio of $Fe(II)/H_2O_2$, initial pH of wastewater, and flow rate are used in this study. The results show that COD removal process obeys a pseudo-first order kinetics. At $Fe(II)/H_2O_2$ ratio of 1:10, initial wastewater pH of 3.0, and feed flow rate of 30 mL/min, the COD removal efficiency was observed to be 80%, and the kinetic rate constant is $0.07046min^{-1}$. The chemical cost for the treatment estimated to be IDR 160 per L wastewater, which is cheaper than the previously reported batch system of IDR 256/L.

The investigation of combined ventilation-biofilter systems using recycled treated wastewater on odor reduction efficiency

  • Febrisiantosa, Andi;Choi, Hong L.;Renggaman, Anriansyah;Sudiarto, Sartika I.A.;Lee, Joonhee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1209-1216
    • /
    • 2020
  • Objective: The present study aimed to evaluate the performance of odor abatement by using two different ventilation-biofilter systems with recycled stablized swine wastewater. Methods: The performance of odor removal efficiency was evaluated using two different ventilation-biofilter-recycled wastewater arrangements. A recirculating air-flow ventilation system connected to a vertical biofilter (M1) and a plug-flow ventilation system connected to a horizontal biofilter (M2) were installed. Water dripping over the surface of the biofilter was recycled at a flow rate of 0.83 L/h in summer and 0.58 L/h in winter to reduce odorous compounds and particulate matter (PM). The experiments were performed for 64 days with M1 and M2 to investigate how these two ventilation-biofilter systems influenced the reduction of odor compounds in the model houses. Odorous compounds, NH3 and volatile organic compounds (VOCs) were analyzed, and microclimatic variables such as temperature, humidity, and PM were monitored. Results: Ammonia concentration inside M1 was about 41% higher on average than that in M2. PM and total suspended particles (TSPs) inside M1 were about 62.2% and 69.9%, respectively, higher than those in M2. TSPs in the model house were positively correlated with the concentration of NH3 and VOCs. Conclusion: M2 emitted lower concentration of odorous compounds than M1. Moreover, M2 could maintain the optimum temperature condition for a swine house during the cooler season. The plug-flow ventilation-horizontal biofilter system could be used for pig houses to minimize air pollution produced by swine farming activities and maintain optimum microclimate conditions for pigs.