• Title/Summary/Keyword: Organic system

Search Result 3,837, Processing Time 0.041 seconds

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Characterization and Classification of Potential Acid Sulfate Soils on Flood-plains (하해혼성(河海混成) 잠재특이산성토양(潛在特異酸性土壤)의 분포(分布)와 분류(分類))

  • Jung, Yeun-Tae;No, Yeong-Pal;Baeg, Cheong-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.173-179
    • /
    • 1989
  • Characterization and classification of the potential acid sulfate soils found on flood-plains in Yeongnam area were summarized as follows: 1. The "Potential acid sulfate soil" layer(s) were appeared in the around 2-4m substrata of soil profiles and characterized by the fine texture, high reduction and physical unripened soft mud deposits or having higher contents of organic matter with dark color. 2. The contents of total sulfur (T-S) in those soils were ranged around 0.45-0.9% and the materials exhibited a strong acidity upon the oxidation with $H_2O_2$. Although the T-S contents was low as much as 0.15%, the sulfidic materials were also acidified strongly by the oxidation with $H_2O_2$ in the condition of lower content of carbonates. As defined in Soil Taxonomy of USDA, most of the sulfidic materials contained less than 3 times carbonate ($CaCO_3$ equivalent wt. %), but there were some which abundant in shell fragments, contained more than 3 times carbonate by weight percentage and that not much acidified by the oxidation with $H_2O_2$. 3. The contents of T-S correlated negatively with the pH oxidized by $H_2O_2$ and with the fizzing time (minutes) due to addition of $H_2O_2$. 4. The potential acid sulfate soils could be defined as soil materials that had sulfidic layer(s) more than 20cm thick within 4m of the soil profile and contained more than 0.15% of T-S with less than 3 times carbonate ($CaCO_3$ equiv. %). A tentative interpretative soil classification system was proposed, i.e., "Weak potential acid sulfate (T-S, 0.15-0.5%)", "Moderate potential acid sulfate (T-S, 0.5-0.75%)", and "Strong potential acid sulfate (T-S, more than 0.75%)". Finally, it was proposed that the "Detailed soil survey with high intensity" should be carried out in the areas of agricultural engineering works such as arableland readjustment works, in advance.

  • PDF

A Design Approach to $CrO_x/TiO_2$-based Catalysts for Gas-phase TCE Oxidation (기상 TCE 제거반응용 $CrO_x/TiO_2$계 복합 산화물 촉매 디자인)

  • Yang, Won-Ho;Kim, Moon-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.368-375
    • /
    • 2006
  • Single and complex metal oxide catalysts supported onto a commercial DT51D $TiO_2$ have been investigated for gas-phase TCE oxidation in a continuous flow type fixed-bed reaction system to develop a better design approach to catalysts for this reaction. Among the $TiO_2$-supported single metal oxides used, i.e., $CrO_x,\;FeO_x,\;MnO_x,\;LaO_x,\;CoO_x,\;NiO_x,\;CeO_x\;and\;CuO_x$, with the respective metal contents of 5 wt.%, the $CrO_x/TiO_2$ catalyst was shown to be most active for the oxidative TCE decomposition, depending significantly on amounts of $CrO_x\;on\;TiO_2$. The use of high $CrO_x$ loadings greater than 10 wt.% caused lower activity in the catalytic TCE oxidation, which is probably due to production of $Cr_2O_3$ crystallites on the surface of $TiO_2$. $CrO_x/TiO_2$-supported $CrO_x$-based bimetallic oxide catalysts were of particular interest in removal efficiency for this TCE oxidation reaction at reaction temperatures above $200^{\circ}C$, compared to that obtained with $CrO_x$-free complex metal oxides and a 10 wt.% $CrO_x/TiO_2$ catalyst. Catalytic activity of 5 wt.% $CrO_x-5$ wt.% $LaO_x$ in the removal reaction was similar to or slightly higher than that acquired for the $CrO_x$-only catalyst. Similar observation was revealed for 5 wt.% $CrO_x$-based bimetallic oxides consisting of either 5 wt.% $MnO_x,\;CoO_x,\;NiO_x\;or\;FeO_x$. These results represent that such $CrO_x$-based bimetallic systems for the catalytic TCE oxidation on significantly minimize the usage of $CrO_x$ that is well known to be one of very toxic heavy metals, and offer a very useful technique to design new type catalysts for reducing chlorinated volatile organic substances.

A Study on the Behavior of Surface-Applied Urea with $^{15}N$ Isotope Dilution Technique in Paddy Soil (논토양에서 중질소(N-15)를 이용한 표면시용 요소로부터 유래하는 질소의 행동에 관한 연구)

  • Lee, Sang-Mo;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.277-286
    • /
    • 1994
  • The pot experiment using $^{15}N$ isotope dilution technique was carried out to calculate the balance of nitrogen of surface applied urea in the rice-soil system. The $^{15}N$ concentration was determined by stable isotope ratio mass spcetrometer (model: VG ISO-GAS MM622). In the pots with $^{15}N$ labeled urea application at the rates of 15 and 30 kg N/10a, the percentage of nitrogen derived from fertilizer (NDFF) in rice was higher at the rate of 30 kg N/10a (average 89%) than at the rate of 15 kg N/10a (average 64%). However, the recovery as percentage of fertilizer N by rice was higher at the rate of 15 kg N/10a (65.5%) than at the rate of 30 kg N/10a (54.2%). The percentage of the fertilizer N remained in extractable inorganic N form at the rates of 15 and 30 kg N/10a were $13.5%\;(NH_4-N\;5.53%,\;NO_3-N\;7.99%)$ and $16.5%\;(NH_4-N\;7.49%,\;NO_3-N\;8.98%)$ in unplanted soil, and $2.0%\;(NH_4-N\;0.63%,\;NO_3-N\;1.32%)$ and$2.3%\;(NH_4-N\;0.87%,\;NO_3-N\;1.40%)$ in soil planted to rice, respectively. The dominant form of inorganic-N in soil after harvest was $NO_3-N$ form rather than $NH_4-N$ form regardless of urea application rate or rice cultivation. The percentage of the fertilizer N remained in organic N form at the rates of 15 and 30 kg N/10a were 65.0 and 41.8% in unplanted soil, and 23.7 and 26.9% in soil planted to rice, respectively. In conclusion, the efficiency of surface-applied urea was greater at the rate 15 kg N/10a than at the rate of 30 kg N/10a.

  • PDF

Method of Environmental-Friendly Fertilization for Rice Cultivation after Vegetable Copping in Green House Soil (시설재배 후작 벼 재배를 위한 친환경적 시비 기술)

  • Jeon, Weon-Tai;Lee, Jae-Sang;Park, Ki-Do;Park, Chang-Yeong;Roh, Sug-Won;Yang, Won-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Green house soils have been intensively cultivated with excessive application of compost and chemical fertilizer for vegetable growth. The objective of this study was to establish the reasonable fertilizer application system for rice cultivation in green house soil. Field experiment was carried out with rice cv. Geumo-byeo 1 in Jisan series soil (fine loamy, mixed, mesic family of Fluventic Haplaquepts) that was previously cropped with green pepper (Capsicum annuum L.) for the last 3 years. Treatment consisted of conventional fertilization $(N-P_2O_5-K_2O=11-4.5-5.7kg\;10a^{-1})$, no basal fertilization, 50% reduction of basal fertilization no top dressing, bulk blending fertilizer, and no fertilizer. The value of pH, available phosphate, and exchangeable potassium after experiment was lower than those before experiment while organic matter content was not difference in all treatment. The value of salt elusion was the highest in no basal fertilization plot. The amount of $NH_4-N$ in soil was higher in growth stage of rice as fertilizer amount increased in 1998. The changes of plant height and tiller were higher as fertilizer amount increased. Thousand-grain weight as yield component was higher in no basal fertilization plot all the year because of decreasing panicle. There was no significant difference in rice yield between treatments in 1998. However, conventional fertilization resulted in significantly increased rice yield in 1999. Nitrogen use efficiency was the highest in no basal fertilization plot in 1998 and in conventional fertilization plot in 1998. Our results suggest that no basal fertilization be best to increase salt elusion with slightly increased yield in first year for rice cropping after vegetable harvesting, which method improves fertilization efficiency. However, conventional fertilization was good for second rice cropping after vegetable harvesting in greenhouse.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Impacts of Oyster Shell and Peat Treatments on Soil Properties in Continuous Watermelon Cropping Greenhouse Plots (패화석 및 이탄 처리가 수박 연작지 토양의 특성에 미치는 영향)

  • Ahn, Byung-Koo;Lee, Jin-Ho;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.438-445
    • /
    • 2010
  • Soils in continuous monoculture cropping system generally have a number of physical and chemical problems. Thus, we studied to investigate selected soil properties in continuous watermelon cropping plots with applications of different soil management practices: 1) conventional farming practice (CFP), 2) chemical fertilizer management practice (FMP), the FMP with different amounts, 0.5, 1.0, and 1.5 t $ha^{-1}$, of oyster shell meal application (FMP-OS 0.5, 1.0, and 1.5 t $ha^{-1}$), and 3) the FMP with different amounts, 2.0, 3.0, and 4.0 t $ha^{-1}$, of peat application (FMP-PT 2.0, 3.0, and 4.0 t $ha^{-1}$) and also to evaluate watermelon quality. Soil pH slightly increased only in the FMP-OS 1.5 t $ha^{-1}$ plot, while it was not changed or decreased a little in other plots. The contents of soil organic matter (SOM) expectedly increased in the FMP-PT plots, whereas it markedly decreased in the FMP-OS plots. The concentrations of exchangeable cations, $Ca^{2+}$, $Mg^{2+}$, and $K^+$, in soils were mostly dropped down in most of the FMP and FMP-PT plots. Otherwise, the exchangeable $Ca^{2+}$ concentration increased a bit in the FMP-OS plots. Also, the concentrations of water-soluble anions, $NO_3^-$, $Cl^-$, ${SO_4}^{2-}$, and ${PO_4}^{3-}$, in soils mostly declined in all the plots applied with the different management practices during the study years. Due to the cation and anion decreases, the electrical conductivity (EC) values in the soils were greatly reduced in the plots. Thus, the soil management practices applied, especially oyster shell meal and peat treatments, might be useful to control soil conditions. However, watermelon quality, such as sugar content and fruit weight, would not be associated with the soil management practices applied.

SOD and Inorganic Nutrient Fluxes from Sediment in the Downstream of the Nagdong River (낙동강 하류 수계에서 저질퇴적층의 SOD와 영양염 용출)

  • Jung, Ha-Young;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.322-335
    • /
    • 2003
  • Nutrient fluxes and sediment oxygen demands (SOD) were measured with intact sediment cores collected from three stations in the downstream of Nagdong River. The sediments were subjected to controlled oxic and hypoxic conditions and temperature gradients (from $10^{\circ}C$ to $30^{\circ}C$) of the overlying waters in laboratory batch system. The effect of temperature and labile layer thickness of the sediment on SOD were examined. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes were elevated above $20^{\circ}C$ and large mobilities were observed when they were coupled with a hypoxic and high-temperature condition. In the well oxygenated conditions, $PO_4\;^{3-}$ fluxes were negative or negligible but $NH_4\;^+$ fluxes ranged from 1.3 mg N $m^{-2}\;hr^{-1}$ to 2.3 $m^{-2}\;hr^{-1}$. Temperature quotients($Q_{10}$) of $PO_4\;^{3-}$ fluxes were 3.7 ${\sim}$ 7.3 ranges to have the most high values. $PO_4\;^{3-}$ and $NH_4\;^+$ fluxes had the logarithmic increase with temperature, while $NO_3\;^-$ was negatively absorbed to the sediment and linearly correlated with the temperature. $SiO_2$ fluxes showed no difference among oxic and hypoxic conditions and sediment texture. The nutrient fluxes would be closely correlated with pore water chemistry of sediments and activated by the top sediment layer composition such as labile organic matters or algal detritus. The ecological implications of the nutrient fluxes were discussed in terms of sources and sinks of nutrients coupled to algal productions in the Nagdong River.

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF