• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.031 seconds

Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports (다양한 유기계 지지체와 광촉매 Nano-ZnO 복합체를 활용한 1,1,2-trichloroethylene 제거 효율 평가)

  • Jang, Dae Gyu;Ahn, Hosang;Kim, Jeong Yeon;Ahn, Chang Hyuk;Lee, Saeromi;Kim, Jong Kyu;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.771-780
    • /
    • 2014
  • In this study, the various organic supports (i.e., silicone, acrylonitrile-butadiene-styrene, epoxy, and, butadiene rubber) with great sorption capacity of organic contaminants were chosen to develop nano-ZnO/organic composites (NZOCs) and to prevent the detachment of nano-ZnO particles. The water resistance of the developed NZOCs were evaluated, and the feasibility of the developed NZOCs were investigated by evaluating the removal efficiency of 1,1,2-trichloroethylene (TCE) in the aqueous phase. Based on the results from water-resistance experiments, long-term water treatment usage of all NZOCs was found to be feasible. According to the FE-SEM, EDX, and imaging analysis, nano-ZnO/butadiene rubber composite (NZBC) with various sizes and types of porosity and crack was measured to be coated with relatively homogeneously-distributed nano-ZnO particles whereas nano-ZnO/silicone composite (NZSC), nano-ZnO/ABS composite (NZAC), and nano-ZnO/epoxy composite (NZEC) with poorly-developed porosity and crack were measured to be coated with relatively heterogeneously-distributed nano-ZnO particles. The sorption capacity of NZBC was close to 60% relative to the initial concentration, and this result was mainly attributed to the amorphous structure of NZBC, hence the hydrophobic partitioning of TCE to the amorphous structure of NZBC intensively occurred. The removal efficiency of TCE in aqueous phase using NZBC was close to 99% relative to the initial concentration, and the removal efficiency of TCE was improved as the amount of NZBC increased. These results stemmed from the synergistic mechanisms with great sorption capability of butadiene rubber and superior photocatalytic activities of nano-ZnO. Finally, the removal efficiency of TCE in aqueous phase using NZBC was well represented by linear model ($R^2{\geq}0.936$), and the $K_{app}$ values of NZBC were from 2.64 to 3.85 times greater than those of $K_{photolysis}$, indicating that butadiene rubber was found to be the suitable organic supporting materials with enhanced sorption capacity and without inhibition of photocatalytic activities of nano-ZnO.

Development of Environmental-friendly Cleaning Agents Utilizing Organic Acids for Removal of Scale on the Wall of Cleaning Beds and Distribution Reservoirs in the Waterworks (유기산을 이용한 상수도 정수장 및 배수지 벽면 스케일 세척용 친환경 세정제 개발)

  • Lee, Jae-Ryoung;Yoon, Hee-Keun;Bae, Jae-Heum;Shin, Hyun-Duk
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • In this study, an environmental-friendly cleaning agent utilizing organic acids and various additives has been developed and applied to the field for removal of scale deposited on the cleaning beds or distribution reservoirs of the waterworks. As an analytical result of scale on the cleaning beds, we found that it consists of mainly metallic oxides such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, and MnO. Malic acid, malonic acid, and citric acid showed relatively better solvency on $Al_2O_3$, $Fe_2O_3$, and MnO except $SiO_2$ among various organic acids. Mixed organic acid solutions of malic acid, malonic acid, and citric acid were prepared with certain weight ratios and their solvencies on mixed metal oxides of $Al_2O_3$, $Fe_2O_3$, and MnO were investigated. The experimental results showed that an 10% mixed organic acid solution prepared with weight ratio of malic acid : malonic acid : citric acid = 6 : 2 : 2 were found to have best scale solvency power of about 29%. The formulated cleaning agents with a small amount of nonionic surfactant showed much better solvency on mixed oxides than mixed organic solution alone. Especially, the formulated cleaning agent with 0.2 wt% LA-7 surfactant appeared to have best scale removal efficiency of about 35%. However, the formulated cleaning agent with disinfectants such as NaClO, $H_2O_2$ and $Ca(ClO)_2$ showed poor solvency on mixed oxides. It is inferred that surfactants are able to improve scale removal efficiency due to their capability of emulsification, and disinfectants cause to degrade scale solvency in water because of their oxidation. Based on these basic experimental results, formulated cleaning agents have been prepared with mixed organic acid solution, nonionic surfactants, and disinfectants and successfully applied to removal of scales on the cleaning beds and distribution reservoir at city D waterworks.

Treatment of non-degrable Organic Pollutants in Aqueous by ultrasonic irradiation (초음파에 의한 수중의 난분해성 오염물질 처리)

  • 손종열;모세영;손진석
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.76-84
    • /
    • 1995
  • This study was performed to examine the factors influenced on the decomposition of nondegradable organic pollutants( Tricholoroethylene,Benzene ) in aqueous by ultrasonic irradiation. The TCE( Tricholoroethylene ) and Benzene are major hazard compounds causing environmental Pollution and not decomposable substances by conventional treatment. The results shows that the oxidation and reduction reaction of ultrasonic Irradiation was formed the H$_{2}$O$_{2}$ , H$^{+}$ and OH$^{-}$ radical, and then theses was decomposed pollutants of TCE and Benzene in aqueous. We were conformed that the ultrasonic irradiation was excellent in removal efficiency of the nondegradable organic substances any other than processes and utilized the treatment of organic compounds in the industrial wastewater. Conclusively, these results suggest that ultrasonic irradiation may be extremely useful for the treatment of wastewater contaminated organic pollutants, which is difficult to treat economically by conventional treatment.

  • PDF

Application of a Membrane Desolvator to the Analysis of Organic Solvents in Inductively Coupled Plasma Atomic Emission Spectrometry

  • Lee, J. S.;Lim, H. B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1040-1044
    • /
    • 1999
  • A micro porous PTFE membrane desolvator (MMD) was built and evaluated for the on-line removal of organic solvents to facilitate the determination of trace metal contaminants in the solvents by ICP-AES. Three organic solvents, isopropyl alcohol (IPA), methanol, and dimethy sulfoxide (DMSO) were studied. The MMD reduced organic solvent concentration in the sample aerosol stream by 82% to 89%, as indicated by monitoring C(I) emission. Net signal intensity of Fe, Al, and Cu was increasing with higher organic solvent concentration, with the rate of increase being solvent dependent. The signal intensities for Mg and Pb followed the trend with the C(I) signal. Changing the sweep gas flow rate affected the optimum signal intensity. Wine samples were analyzed by the method of standard addition. The concentrations of B, Al, and Mg were determined with a relative precision of less than 2.3%.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

The Estimation of the Coagulant on Method of Lime Input in the Water Treatment Plant at High Turbidity (고탁도시 소석회 투입방법에 따른 정수장 응집제의 효율 평가)

  • Bang, Mi Ran;Lim, Bong Su;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.107-117
    • /
    • 1998
  • In order to removal turbidity at high turbidity, this study was carried to evaluate the coagulants(Alum, PACl, PACS) that was suited the characteristics of raw water in water treatment plants and to determinate the optimum method of lime feed. When the optimum coagulant was selected the organic matter removal was also investigated as $UV_{254}$. PACl, lime first feed had the highest turbidity removal efficiency rate as above 99.1% and then $UV_{254}$ removal rate was obtained over than 88.0%. If you had the necessary of the lime feed, among the method of lime feed time interval feed largely was improved than simultaneous feed. Also, lime feed dose had about 1/5 of coagulants dose in case of Alum and PACl, but always PACS should be considerated lime dose.

  • PDF

산업단지내 독성유기화합물 및 중금속으로 오염된 토양의 정화복원기술 상용화 연구

  • 김수곤;손규동;박지연;최희철;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.31-34
    • /
    • 2004
  • Feasibility of electrokinetic(EK)-Fenton process and Ozone chemical oxidation were investigated for tile removal of organic contaminants and heavy metals from the contaminated soil. In EK-Fenton process, accumulated electroosmotic flow(EOF) was 80 L for 26 days. Removal efficiency of TPH, As, and Ni were 61%, 36%, and 47%, respectively. The concentration of As was high near the anode due to the transport of anionic As toward the anode, while the concentration of Ni was high near the cathode by the movement of cationic Ni to the cathode. Field scale application of in-situ ozonation was carried out for removal of TPH in 3-D test cell (3 m$\times$2 m$\times$2 m). After 25 days of ozone injection, more than 80% of removal rate was observed through the test cell.

  • PDF