DOI QR코드

DOI QR Code

Development of Environmental-friendly Cleaning Agents Utilizing Organic Acids for Removal of Scale on the Wall of Cleaning Beds and Distribution Reservoirs in the Waterworks

유기산을 이용한 상수도 정수장 및 배수지 벽면 스케일 세척용 친환경 세정제 개발

  • Received : 2012.08.02
  • Accepted : 2012.09.05
  • Published : 2012.09.30

Abstract

In this study, an environmental-friendly cleaning agent utilizing organic acids and various additives has been developed and applied to the field for removal of scale deposited on the cleaning beds or distribution reservoirs of the waterworks. As an analytical result of scale on the cleaning beds, we found that it consists of mainly metallic oxides such as $SiO_2$, $Al_2O_3$, $Fe_2O_3$, and MnO. Malic acid, malonic acid, and citric acid showed relatively better solvency on $Al_2O_3$, $Fe_2O_3$, and MnO except $SiO_2$ among various organic acids. Mixed organic acid solutions of malic acid, malonic acid, and citric acid were prepared with certain weight ratios and their solvencies on mixed metal oxides of $Al_2O_3$, $Fe_2O_3$, and MnO were investigated. The experimental results showed that an 10% mixed organic acid solution prepared with weight ratio of malic acid : malonic acid : citric acid = 6 : 2 : 2 were found to have best scale solvency power of about 29%. The formulated cleaning agents with a small amount of nonionic surfactant showed much better solvency on mixed oxides than mixed organic solution alone. Especially, the formulated cleaning agent with 0.2 wt% LA-7 surfactant appeared to have best scale removal efficiency of about 35%. However, the formulated cleaning agent with disinfectants such as NaClO, $H_2O_2$ and $Ca(ClO)_2$ showed poor solvency on mixed oxides. It is inferred that surfactants are able to improve scale removal efficiency due to their capability of emulsification, and disinfectants cause to degrade scale solvency in water because of their oxidation. Based on these basic experimental results, formulated cleaning agents have been prepared with mixed organic acid solution, nonionic surfactants, and disinfectants and successfully applied to removal of scales on the cleaning beds and distribution reservoir at city D waterworks.

본 연구에서는 유기산과 여러 첨가제들을 사용하여 상수도의 정수장이나 배수지 벽면에 침적되어 있는 스케일 제거에 활용할 수 있는 친환경적인 세정제를 개발하고 현장 적용을 수행하였다. 정수장의 벽면의 스케일 분석결과 산화규소($SiO_2$), 산화알루미늄($Al_2O_3$), 산화철($Fe_2O_3$), 산화망간(MnO) 등 주로 금속산화물로 이루어져 있는 것을 알 수 있었다. 그리고 여러 유기산 중에서 말릭산(malic acid), 말론산(malonic acid), 시트릭산(citric acid)과 산화규소를 제외한 산화알루미늄, 산화철, 산화망간 등의 금속산화물에 비교적 좋은 용해력을 보여주었다. 이들 유기산들을 일정 무게비율로 배합하여 산화알루미늄, 산화철, 산화망간의 혼합 금속산화물의 용해력 실험 결과 여러 유기산 배합 비율 중 말릭산, 말론산, 시트릭산이 6 : 2 : 2 배합비율로 만든 10 wt% 유기산 혼합용액이 정수장 및 배수지의 스케일 제거효율이 약 29%로 가장 뛰어났음을 확인할 수 있었다. 이들 유기산 혼합용액에 비이온 계면활성제를 첨가하여 배합한 세정제 용액이 유기산 혼합용액만을 사용한 경우보다 더욱 높은 금속산화물 용해력을 가지는 것을 확인 할 수 있었다. 특히, 알콜에톡실레이트 계열의 LA-7 비이온계면활성제를 0.2% 첨가하는 경우 약 35%의 스케일 제거효율을 보여주었다. 그렇지만 유기산 혼합용액에 살균제를 첨가하는 경우 스케일 제거효율이 저하되었다. 이것은 계면활성제가 오염물의 유화분산 성질에 의해 스케일 제거력 향상에 도움을 주지만 살균제의 경우에는 살균제의 산화력에 의하여 스케일의 물에 대한 용해력을 떨어뜨려 스케일 제거에 방해를 하기 때문인 것으로 판단된다. 이러한 기초실험 결과를 바탕으로 유기산 혼합용액에 첨가제인 계면활성제, 살균제 등을 넣고 배합된 세정제를 사용하여 D시의 상수도 정수장 및 배수지의 스케일 세척시험에 성공적으로 적용시킬 수 있었다.

Keywords

References

  1. 2009 White Paper of Environment, Ministry of Environment (2009).
  2. http://ronperrin.wordpress.com/2007/10/02
  3. Yeom, C. M., Cho, Y. S., Kim, K. N., Kim, J. K., and Kim, S. D., "Techniques for Cleaning and Regeneration of Indoor Supply Pipe," J. Korean Soc. of Water & Wastewater, 18(4), 411-417 (2004).
  4. Schaal, C., "Composition and method for cleaning drink water Tanks," U.S. Patent No. 6,346,217 (2002).
  5. Schulhoff, J., and Schaal, C., "Cleaning/disinfectant composition to clean surfaces," U.S. Patent No. 7,183,246 B2 (2007).
  6. Reimann-Philip, U., and Schulgoff, J., "Method and composition for removing biological fouling from surfaces in contact with water," U.S. Patent No. 2008/0314416 A1 (2008).
  7. Zwanziger, W. F., and Reimann-Philip, U., "Method and composition for removing contamination from surfaces in contact with water," U.S. Patent No. 2011/0108069 A1 (2011).
  8. http://awwoa.ab.ca./home/pdfs/ChemicalSurfaceDepositRemo val.pdf/
  9. Kim, T. W., "Method for cleaning water reservoir utilizing non-toxic and environmental-friendly cleaning agent," Korea Patent No. 10-1021035 (2011).
  10. Kim, T. W., "Non-toxic and environmental-friendly cleaning agent for water reservoir," Korea Patent No.10-1042488 (2011).
  11. Bae, J. H., Woo, D. S., and Shin, H. D., "Cleaner compositon for cleaning indoor water supply pipes," Korea Patent No. 10-0808313 (2008).
  12. Lee, J. H., Jung, J. Y., Park, Y. B., Bae, J. H., Woo, D. S., and Shin, H. D., "Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes," Clean Technol., 16 (3), 162-171 (2010).
  13. Panias, D., Taxiarchou, M., Paspaliaris, I., and Kontopoulos, "Mechani of Dissolution of Iron Oxides in Aqueous Oxalic Acid Solutions," Hydrometallurgy, 42, 257-265 (1996). https://doi.org/10.1016/0304-386X(95)00104-O
  14. Fukuzaki, S., Urano, H., and Yamada, S., "Effect of pH on the Efficiency of Sodium Hypochlorite Solution as Cleaning and Bactericidal Agents," J. Surf. Finishing Soc. Jap., 58(8), 465-469 (2007). https://doi.org/10.4139/sfj.58.465
  15. Bae, J. H., and Shin, H. D., "Eco-friendly detergent composition for cleaning water reservoir," Korea Patent No. 10- 1140217 (2012).

Cited by

  1. Biological production of l-malate: recent advances and future prospects vol.34, pp.1, 2018, https://doi.org/10.1007/s11274-017-2349-8
  2. Investigation of Membrane Fouling Materials in I Membrane Water Treatment Plant by Analyzing Discharge Liquid from CIP Processes and the Flux Test using the Mini-Modules vol.41, pp.3, 2012, https://doi.org/10.4491/ksee.2019.41.3.117