• Title/Summary/Keyword: Organic removal

Search Result 1,935, Processing Time 0.026 seconds

Soil Properties Affecting the Adsorption of Lead (Pb의 흡착에 영향을 미치는 토양의 특성)

  • 박상원
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 1999
  • Soil properties which affect the retention of Pb(I) were investigated in the laboratory. It was determined, through selective removal, that organic matter and Fe-oxides are of lesser importance in influencing Pb retention than are soil clay minerals. The following trend : clays > organic matter > Fe-oxides represents the relative importance of each constituent in the adsorption of Pb by soils. The consistently greater Pb uptake by surface over subsurface samples was apparently due to differences in organic matter content, inasmuch as organic matter removal from both resulted in similar adsorption characteristics. All five soils stooled exhibited a pH-dependent trend of adsorption. The extent of Pb adsorption was least at low pH values(4~5), was maximum in the neutral pH range, and leveled off or diminished under more alkaline conditions. There was no strong correlation between Pb uptake and soil cation exchange capacity as routinely measured by the NH$_4$OAc method. A knowledge of clay mineralogy in conjunction with soil pH is suggested as being the most reliable guide to predicting Pb retention by soils.

  • PDF

Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구)

  • Hyun-Gu Kim;Dae-Hee Ahn
    • Journal of Environmental Science International
    • /
    • v.32 no.7
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

Removal characteristics of NOMs in a slow sand filter at different media depth and operation time (완속여과공정에서 운전시간 및 여층깊이에 따른 자연유기물질(NOM) 제거 특성)

  • Park, Noh-Back;Park, Sang-Min;Seo, Tae-Kyeong;Jun, Hang-Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.4
    • /
    • pp.467-473
    • /
    • 2008
  • Natural organic matter (NOM) removal by physico-chemical adsorption and biological oxidation was investigated in five slow sand filters with different media depths. Non-purgeable dissolved organic carbon(NPDOC) and $UV_{254}$ absorbance were measured to evaluate the characteristics of NOM removal at different filter depths. Removal efficiency of NOM was in the range of 10-40% throughout the operation time. At start-up of the filters packed with clean sand media, NOM was probably removed by physico-chemical adsorption on the surface of sand through the overall layer of filter bed. However, when Schumutzdecke layer was built up after 30 days operation, the major portion of NPDOC was removed by biological oxidation and/or bio-sorption in lower depth above 50 mm. NOM removal rate in the upper 50 mm filter bed was $0.82hr^{-1}$. It was about 20 times of the rate($0.04hr^{-1}$) in the deeper filter bed. Small portion of NPDOC could be removed in the deeper filter bed by both bio-sorption and biodegradation. SEM analysis and VSS measurement clearly showed the growth of biofilm in the deeper filter bed below 500 mm, which possibly played an important role in the NOM removal by biological activity besides the physco-chemical adsorption mechanism

Removal of Organic Wax and Particles on Final Polished Wafer by Ozonated DI Water

  • Yi, Jae-Hwan;Lee, Seung-Ho;Kim, Tae-Gon;Lee, Gun-Ho;Choi, Eun-Suck;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.307-312
    • /
    • 2008
  • In this study, a new cleaning process with a low cost of ownership (CoO) was developed with ozonated DI water ($DIO_3$). An ozone concentration of 40 ppm at room temperature was used to remove organic wax film and particles. Wax residues thicker than $200\;{\AA}$ remained after only a commercial dewaxer treatment. A $DIO_3$ treatment in place of a dewaxer showed a low removal rate on a thick wax layer of $8000\;{\AA}$ due to the diffusion-limited reaction of ozone. A dewaxer was combined with a $DIO_3$ rinse to reduce the wax removal time and remove wax residue completely. Replacing DI rinse with the $DIO_3$ rinse resulted in a surface with a contact angle of less than $5^{\circ}$, which indicates no further cleaning steps would be required. The particle removal efficiency (PRE) was further improved by combining a SC-1 cleaning step with the $DIO_3$ rinsing process. A reduction in the process time was obtained by introducing $DIO_3$ cleaning with a dewaxing process.

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF

Removing High Concentration Organic Matters by Using Electrolysis (전기분해에 의한 고농도 유기물질 제거 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Lee, Jea-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.251-264
    • /
    • 2000
  • Organic removal from synthetic wastewater by electrochemical methods was investigated with various operating parameters, such as current density, retention time, electrode gap and $Cl^-/COD_{Cr}$ ratio. In electrolysis, dioxide iridium coated titanium ($IrO_2/Ti$) and stainless steel plate were used for anode and cathode respectively. The $COD_{Cr}$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/COD_{Cr}$ ratio was about $1.3kgCl^-/kgCOD_{Cr}$ when organic removal obtained 70 %, $Cl^-/COD_{Cr}$ ratio needs $2.2kgCl^-/kgCOD_{Cr}$ so as to organic completely remove. The removal efficiency of organics increased with current density, retention time and $Cl^-/COD_{Cr}$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $COD_{Cr}$ removal efficiencies are as follows. $$COD_{Cr}(%)=80.0360(Current\;density)^{0.4451}{\times}(HRT)^{0.8102}{\times}(Gap)^{-0.4915}{\times}(Cl^-/COD_{Cr})^{0.5805}$$ There existed a competition between the removals for $COD_{Cr}$ and ammonium during electrolysis, the removal of ammonium was shown to be dominant and $COD_{Cr}$ removal was low. But $COD_{Cr}$ removal was raised as addition of alkalinity.

  • PDF

A Study on apply of submerged biofilter for nutrient removal (영양염류 제거를 위한 생물막 공정의 적용에 관한 연구)

  • 안승섭
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.415-422
    • /
    • 2000
  • In this study the removal possibility of nutrients of T-P, NH3-N, NO3-N and T-N is examined through a positive experimental study using submerged biofilter of media packing channel method. From the analysis of nutrients removal efficiency for each run of the collected sample following results are obtained. Firstly the result of N/P surveying for inflow shows serious value that excess the limit value of 20 as the values are in the range of 12.0~42.7 and the average is 25.73. Secondly the highest concentration of the incoming NH3-N reaches double of the standard since the concentrations of NH3-N and NO3-N for inflow shows 0.06mg/$\ell$ and 2.5~3.8mg/$\ell$ respectively and the average removal rate which passed the submerged biofilter adopted in this study is a satisfactory level. Next the average removal rate of T-P of 51.5% shows the possiblity of entrophication removal since the removal rate of T-P of 66.8~68.8% in relative low temperature period of RUN 1~2 appeared higher than in RUN 3~6 and T-N shows relatively poor result with the average removal rate of 34.1% And it is known that the bigger BOD/P and BOD/N are the more removal rate increases from the examination result of the relation between BOD/P and BOD/N and the treatment water T-P and T-N to decide the relation with the concentration of organic matters and though that the appropriate proportion is necessary for effective removal of nitrogen and phsophorus.

  • PDF

The Role of Primary Clarifier in Biological Processes for Nutrient Removal (생물학적 질소·인제거 공정에서 일차 침전지의 영향)

  • Whang, Gye-Dae;Kim, Tae-Kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2007
  • The lab-scale BNR processes fed with Municipal Wastewater Before or After Primary Clarifier (MWBPC or MWAPC) were operated to observe the behavior of particle organic matter in terms of nitrification and denitrification efficiency. As a result of the fractionation of the COD from MWBPC or MWAPC using an aerobic respirometric serum bottle reactor, the total mass of biodegradable organic matter from MWBPC is about 52% greater than the mass from MWAPC. Batch reactors were operated to observe the effect of the Particulate Organic Matter (POM) on substrate utilization for denitrification. Although the consumption of POM for denitrification was observed, the increment of the Specific Denitrification Rate (SDNR) was not great. In terms of the effect of POM on nitrification at different HRTs, activate sludge reactors were operated to determine the optimal HRT when MWBPC and MWAPC were fed relatively. All reactors showed a great organic matter removal efficiency. Reactors fed with MWAPC had obtained the nitrification efficiency above 90% when the HRT of 4 hr, at least, was maintained, while reactors fed with MWBPC had same efficiency when the HRT longer than 5 hr was kept. Three parallel $A^2/O$ systems fed with MWBPC or MWAPC relatively were operated to investigate the effects of POM on BNR processes with varying the HRT of an anoxic reactor. For all systems, the efficiency of organic matter removal and denitrification, respectively, was great and about the same. In case of denitrification efficiency, system with MWAPC had 1.5% lower than system with MWBPC at the same HRT of anoxic reactor of 2 hr, and the increasing the HRT of the anoxic reactor by 1 hr in systems fed with MWBPC resulted in a 3.5% increment. The denitrification rate was similar while the consumption of organic matter in systems fed with MWBPC was higher than system fed with MWBPC. It suggests that POM in MWBPC was not be used significantly as a substrate for denitrification in system with the HRT of 3 hr of an anoxic reactor.

Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI) (축전식 탈염 공정의 액상 유기물에 따른 질소(N) 및 인(P) 처리 특성)

  • Lee, Bo-Ram;Jeong, In-Jo;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • Organic carbons such as methanol, ethanol, iso-propanol, methoxy ethanol, glucose are added(1, 2, 3%) in the 2000 ppm $NH_3$ and $H_3PO_4$. As vol.%. cyclic voltammetry measurement of the capacity with the addition of organic carbon, the results of $NH_3$ + 3 vol.% Methanol Addition, $H_3PO_4$ + 2 vol.% iso-propanol addition of the increase in capacity was observed. Applying to the CDI Module cell with an addiction of organic carbon is confirm that remove $NH_4$-N and $PO_4$-P in sewage. Namely, the removal efficiency of $NH_3$ was increase of 16.4% during adsorption, 30.4% during desorption and the removal efficiency of $H_3PO_4$ was increase of 63% during adsorption, 54.7% during desorption. Therefore, the result of this research is confirm that effect of the N, P removal and considered that reduction of the operating costs without removing the organic matter in the influent wastewater.