• 제목/요약/키워드: Organic reaction in water

검색결과 449건 처리시간 0.027초

Synthesis of Highly Concentrated ZnO Nanorod Sol by Sol-gel Method and their Applications for Inverted Organic Solar Cells

  • Kim, Solee;Kim, Young Chai;Oh, Seong-Geun
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.350-356
    • /
    • 2015
  • The effects of the zinc oxide (ZnO) preparing process on the performance of inverted organic photovoltaic cells (OPVs) were explored. The morphology and size of ZnO nanoparticles were controlled, leading to more efficient charge collection from device and higher electron mobility compared with nanospheres. Nanosized ZnO particles were synthesized by using zinc acetate dihydrate and potassium hydroxide in methanol. Also, water was added into the reaction medium to control the morphology of ZnO nanocrystals from spherical particles to rods, and $NH_4OH$ was used to prevent the gelation of dispersion. Solution-processed ZnO thin films were deposited onto the ITO/glass substrate by using spin coating process and then ZnO films were used as an electron transport layer in inverted organic photovoltaic cells. The analyses were carried out by using TEM, FE-SEM, AFM, DLS, UV-Vis spectroscopy, current density-voltage characteristics and solar simulator.

제주시 정수장 처리수의 급수과정별 수질변화 특성 (Water Quality Change Characteristics of Treated Water in Distribution System of Water Treatment Plant of Jeiu City)

  • 한경용;이민규;정호진;감상규
    • 한국환경과학회지
    • /
    • 제16권1호
    • /
    • pp.81-94
    • /
    • 2007
  • The purpose of this work is to investigate the water quality change characteristics of treated water in water distribution systems of Water Treatment Plants (WTPs) of Jeju City. For this, the raw water, treated water and tap water that did not pass (named as not pass-tap water) and passed through the water storage tank (named as pass-tap water) were sampled and analyzed monthly from September 2001 to August 2002, for four (W, S, B and O) WTPs except for D WTP (where treated water is not supplied continuously) among WTPs of Jeju City. The concentrations of $NO_3^-$ and $Cl^-$ of treated water in distribution systems changed little, but changed seasonally, which is considered to be based on the seasonal variation of the quality of raw water. The pH of treated water changed little in distribution systems for S WTP, but for the other WTPs, the pH of not pass-tap water was similar to that of treated water and the pH of pass-tap water was higher than that of treated water. The turbidity of treated water in distribution systems changed little except for W2 of W WTP and S4 and S5 of S WTP, where it was higher than that of each treated water. The residual chlorine concentrations between treated water and not pass-tap water changed little, but those between treated water and pass-tap water changed greatly, based on the its long residence time in water storage tank and so its reaction with organic matter, etc or its evaporation. The concentrations of TTHMs (total trihalomethanes) and $CHCl_3$ that induce cancers in water distribution systems of these WTPs, were much lower than their water quality criteria and those in other cities. The concentrations of TTHMs of treated water and not pass-tap water were similar, but concentrations of pass-tap water were 1.5 to 2.0 times higher than those of treated water and not pass-tap water, due to the reaction of residual chlorine and organic matter, etc, with the result of long residence time in water storage tank.

하폐수처리에서 질소 제거를 위한 미생물 전기화학 기술의 동향 (Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment)

  • 채형원;최용훈;김명운;김영진;정석희
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.345-356
    • /
    • 2020
  • The removal of organic carbon and nutrients (i.e. N and P) from wastewater is essential for the protection of the water environment. Especially, nitrogen compounds cause eutrophication in the water environment, resulting in bad water quality. Conventional nitrogen removal systems require high aeration costs and additional organic carbon. Microbial electrochemical system (MES) is a sustainable environmental system that treats wastewater and produces energy or valuable chemicals by using microbial electrochemical reaction. Innovative and cost-effective nitrogen removal is feasible by using MESs and increasing attention has been given to the MES development. In this review, recent trends of MESs for nitrogen removal and their mechanism were conclusively reviewed and future research outlooks were also introduced.

연속회분식 반응기를 이용한 수산물 가공폐수 처리 (Treatment of Fish Processing Wastewater Using Sequencing Batch Reactor (SBR))

  • 백병천;신항식
    • 상하수도학회지
    • /
    • 제8권1호
    • /
    • pp.18-26
    • /
    • 1994
  • This research investigated efficient operation mode for the successful performance of SBR(sequencing batch reactor) treating fish processing wastewater, and the effect of sodium chloride (NaCl) on treatment efficiency. 2-hour-annerobic, 6-hour-aerobic and 3-hour-anoxic operation during reaction period was found an effective operating method for organic and nitrogen removal from fish processing wastewater in SBR system. The average removal efficiencies of COD, BOD, and total nitrogen in SBR operated continuousely were 91%, 95%, and 67.1%, respectively. The estimated values of biomass yield coefficient(Y), microbial decay coefficient($K_d$), and bioreaction rate constant(K) were $0.35gMLSS/gCOD_{removed}$, $0.015day^{-1}$, and $0.209hr^{-1}$, respectively. As NaCl concentration increased from 5 to 30g/L, sludge settleability was cnhanced but organic removal in the reactor was decreased. NaCl of influent had considerable relationship with COD removal, whereas it did not significant affect nitrogen removal.

  • PDF

연속반응공정을 이용한 유기성자원으로부터 수소생산을 위한 최적인자도출에 관한 연구 (Deduction of Optimum Factors for Hydrogen Production from Organic Resources using a Continuous Reaction Process)

  • 김충곤;신현곤
    • 유기물자원화
    • /
    • 제19권2호
    • /
    • pp.22-27
    • /
    • 2011
  • 본 연구에서는 음식물류폐기물폐수와 양돈폐수를 특별히 전처리 하지 않고 3:7의 비율로 혼합하여 연속반응공정을 이용한 수소생산의 최적 인자를 도출하기 위해 연구를 수행하였다. 본 연구결과 수소발생량은 pH 5.5의 조건에서 가장 많이 발생하였으며, 이를 통해 음식물류폐기물과 양돈폐수의 혼합시의 수소생산의 최적 pH는 5.5 임을 확인하였다. HRT에 따른 수소발생량은 3일보다 4일의 경우에 높은 수소발생량을 보였으며, 이는 HRT값의 변화에 따라 수소발생미생물의 활성에 크게 관여하는 것으로 HRT역시 수소발생미생물에 중요한 인자로 작용한다고 판단된다. 유기물의 제거율은 운전 6일째에 최대 TS 52%, VS 71%, TSS 83%, VSS 89%의 제거율을 기록하였으며, 수소생산 공정을 통하여도 유기물의 제거가 가능함을 확인하였다.

함평, 교촌 점토의 특성과 점토-유기물 복합체에 관한 연구 (Hampyong, Kyochon Clay-Its Characteristics and the Effects of Clay-organic Complexes on its.)

  • 정창주;백용혁;박현수
    • 한국세라믹학회지
    • /
    • 제14권2호
    • /
    • pp.95-103
    • /
    • 1977
  • Characteristics of Ham Pyong clay and clay-organic complexes were investigated by means of geological exploration, chemical analysis, X-ray diffraction, differential thermal analysis, electron microscopy, thermal mechanical analysis, cation exchange capacity and viscosity measurement. The results are as follows; 1) This caly is a transported clay which has black and white colors, and the amounts of deposit are estimated about 1, 600, 000M/T. 2) The major mineral phases identified by X-ray diffraction are kaolinite, sericite and halloysite and the minor phases are quartz and feldspar, these mineral phases can be seperated very easily by the elutriation method. 3) It was supposed that the black colored clay involved a certain clay-organic complexs by the mechanism of intercalation as well as surface absorption. 4) The clay-organic complexes in clay seemed to improve dispersity, to increase the fluidity of clay-water slips, to decrease the firing shrinkage and to promote the thermo-chemical reaction at temperature range up to 50$0^{\circ}C$, but not to effect on the resulted firing color.

  • PDF

Thin Film Encapsulation with Organic-Inorganic Nano Laminate using Molecular Layer Deposition and Atomic Layer Deposition

  • 윤관혁;조보람;방지홍;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.270-270
    • /
    • 2016
  • We fabricated an organic-inorganic nano laminated encapsulation layer using molecular layer deposition (MLD) combined with atomic layer deposition (ALD). The $Al_2O_3$ inorganic layers as an effective single encapsulation layer were deposited at 80 degree C using ALD with alternating surface-saturation reactions of TMA and $H_2O$. A self-assembled organic layers (SAOLs) were fabricated at the same temperature using MLD. MLD and ALD deposition process were performed in the same reaction chamber. The prepared SAOL-$Al_2O_3$ organic-inorganic nano laminate films exhibited good mechanical stability and excellent encapsulation property. The measurement of water vapor transmission rate (WVTR) was performed with Ca test. We controlled thickness-ratio of organic and inorganic layer, and specific ratio showed a lowest WVTR value. Also this encapsulation layer contained very few pin-holes or defects which were linked in whole area by defect test. To apply into real OLEDs panels, we controlled a film stress from tensile to compressive and flexibility defined as an elastic modulus with organic-inorganic ratio. It has shown that OLEDs panel encapsulated with nano laminate layer exhibits better properties than single layer encapsulated in acceleration conditions. These results indicate that the organic-inorganic nano laminate thin films have high potential for flexible display applications.

  • PDF

High performance Organic-Inorganic Hybrid Materials for Application in OLED Barrier Coating

  • Jung, Kyung-Ho;Yun, Chang-Hun;Bae, Jun-Young;Yoo, Seung-Hyup;Bae, Byeong-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.806-809
    • /
    • 2009
  • Epoxy functionalized organic-inorganic hybrid materials (hybrimers) were synthesized by sol-gel reaction for application in OLED barrier coating. By using the calcium degradation method, the oxygen transition rate (OTR) and water vapor transition rate (WVTR) measured so far is $10^{-2}cc/m^2$-day for oxygen and $10^{-1}g/m^2$-day for water molecules with single hybrimer coating film, respectively. Encapsulated OLED devices have life time of 14hrs of a single hybrimer barrier coating and 29hrs of hybrimer/inorganic double barrier coatings at $25^{\circ}C$ and 60% relative humidity.

  • PDF

Study of Kinetics of Bromophenol Blue Fading in Alcohol-Water Binary Mixtures by SESMORTAC Model

  • Samiey, Babak;Alizadeh, Kamal;Mousavi, Mir Fazlolah;Alizadeh, Nader
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.384-392
    • /
    • 2005
  • Solvent effects on the kinetics of bromophenol blue fading have been investigated within a temperature range in binary mixtures of methanol, ethanol, 1-propanol, ethylene glycol and 1,2-propanediol with water of varying solvent compositions up to 40% by weight of organic solvent component. Correlation of logk with reciprocal of the dielectric constant was linear. Finally a mechanism was proposed for the bromophenol blue fading upon SESMORTAC (study of effect of solvent mixture on the one-step reaction rates using the transition state theory and cage effect) model, by means of this model, the fundamental rate constants of the fading reaction in these solvent systems were calculated.

중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용 (Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction)

  • 구윤모;이영빈;임경민;김진수
    • 공업화학
    • /
    • 제34권2호
    • /
    • pp.180-185
    • /
    • 2023
  • 물의 전기 분해 효율을 향상시키기 위해 산소발생반응(OER)의 반응 속도를 가속화하며 고성능과 장기 안정성을 가진 OER 전기촉매 개발이 필수적이다. 본 연구에서는 고효율의 OER 전기촉매를 합성하기 위해 중공 금속-유기골격체 (MOF)로부터 유도된 루테늄-코발트 산화물 촉매를 개발하였다. 합성된 촉매는 루테늄의 표면 노출을 증대시킴으로 낮은 Tafel 기울기와 10 mA/cm2의 전류밀도에서 386 mV의 낮은 과전위가 관찰되었다. 또한 상용 RuO2 촉매 대비 높은 질량 활성과 안정성을 보여, 귀금속 촉매를 대체할 수 있을 것으로 기대된다.