• Title/Summary/Keyword: Organic precursor

Search Result 305, Processing Time 0.029 seconds

A Study on Removal of Natural Organic Matter (NOM) and Application of Advanced Water Treatment Processes for Controlling Disinfection By-Products (소독부산물 제어를 위한 자연유기물(NOM) 제거와 고도정수처리공정 적용에 관한 연구)

  • Kim, Hyun Gu;Eom, Han Ki;Lee, Dong Ho;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.563-568
    • /
    • 2015
  • Natural Organic Matter (NOM) is a precursor of disinfection by products. Recently, with the increase in NOM concentration caused by a large amount of algae, the creation of disinfection by-products is becoming a big issue. Therefore, in this study, PAC+Membrane+F/A hybrid process was organized to control disinfection by-products in small-scale water treatment plants. The optimal dosage of PAC was set at 20 mg/L through Lab. scale test. Also, it is judged that NOM concentration must be less than 1.0 mg/L to meet the recommended criteria of drinking water quality monitoring items of disinfection by-products during chlorination. The existing conventional water treatment process was compared to the independent F/A process and the PAC+Membrane+F/A hybrid process through pilot plant operation, and the result showed that there is a need to apply an advanced water treatment process to remove not only NOMs but also Geosmin caused by algae. Accordingly, it is considered that applying the PAC+Membrane+F/A process will help in controling a clogged filter caused by a large amount of algae and disinfection by-products created by chlorination and can be used as an advanced water treatment process to meet the recommended criteria of drinking water quality monitoring items.

Preparation of O-I hybrid sols using alkoxysilane-functionalized amphiphilic polymer precursor and their application for hydrophobic coating (알콕시 실란기능화 양친성 고분자 전구체를 이용한 유-무기 하이브리드 졸 제조 및 이를 이용한 발수 코팅)

  • Lee, Dae-Gon;Kim, Nahae;Kim, Hyo Won;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.4
    • /
    • pp.146-154
    • /
    • 2019
  • In this study, alkoxysilane-functionalized amphiphilic polymer (AFAP), which have hydrophilic segment and hydrophobic segment functionalized by alkoxysilane group at the same backbone, was synthesized and used as a dispersant and control agent for reaction rate in the preparation of colloidally stable organic-inorganic (O-I) hybrid sols. After reaction with fluorosilane compounds, fluorinated O-I hybrid sols were prepared and coated onto glass substrate to form hydrophobic O-I hybrid coating films through low-temperature curing process. Surface hardness and hydrophobicity of cured coating films were varied with type of solvent and composition of AFAP and fluorinated alkoxysilane compounds. At appropriate solvent and composition of fluorinated alkoxysilane compounds, O-I hybrid coating film having high transparency and surface hardness could be prepared, which could be applicable to cover window of solar cell and displays.

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Study of the Crystal Structure of a Lyocell Precursor for Carbon Fibers (탄소섬유용 리오셀 전구체의 결정구조에 관한 연구)

  • Park, Gil-Young;Kim, Woo-Sung;Lee, Su-Oh;Hwang, Tae-Kyung;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.36-42
    • /
    • 2019
  • In this study, the pre-treatment of lyocell fabrics was performed using phosphoric acid (PA) as a phosphorus flame retardant and melamine resin (MR) as a cross-linking agent to fabricate carbon fabrics using lyocell fibers. The physical and chemical changes were investigated by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and weight analysis. We confirmed that the weight yield of the carbon fabrics compared to the untreated fabrics increased by 14.7%, and width and length yield of the fabrics increased by 15% and 15.5%, respectively. This may be due to the effect of promoting the dehydration reaction of cellulose, forming char on the fiber surface, which induces a crosslinking reaction in the cellulose molecule and stabilizes the structure upon pyrolysis.

Variations in the Monthly PM2.5 Concentrations and their Characteristics around the Busan Seaport Area (부산 항만 주변지역 PM2.5 농도의 월 변화 및 특성)

  • Kang, Nayeon;An, Joon Geon;Lee, Seon-Eun;Hyun, Sangmin
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.845-861
    • /
    • 2021
  • This study investigated the variations in monthly PM2.5 concentrations and their characteristics at the sampling site (35.075°N, 129.080°E) around the Busan seaport area for six months (from August 2020 to January 2021). Monthly PM2.5 concentrations in the filtered samples ranged from 8.4 to 42.3 ㎍/m3 (average=19.6±8.2 ㎍/m3, n=50) and were generally high in August, December, and January, and low in September, October, and November. The variations of monthly PM2.5 concentrations showed similar patterns to those of the neighboring national air quality monitoring sites. The contents of Total Carbon (TC), Organic Carbon (OC), Elemental Carbon (EC), and OC/EC ratios in PM2.5 showed large variability during the study period. The OC/EC ratios ranged from 4.2 to 34.4, suggesting that the relative contributions of OC and EC to the PM2.5 concentrations changed temporally and might be related to their formation sources. Variations in the chemical components of and particle size distributions in PM2.5 showed that high PM2.5 concentrations were affected by various sources, such as sea salt and ship emission. The precursor gas concentrations were discussed in terms of monthly variations and their contributions to PM2.5 concentrations. However, further research is needed to understand the characteristics and behaviors of PM2.5 concentrations around the Busan seaport area.

Effect of Rye Cultivation for Reduction of Phytophthora Blight in Red Pepper Field (노지고추에서 고추역병 경감을 위한 녹비작물 호밀의 재배효과)

  • Kwon, Oh-Hun;Kim, Chan-Yong;Kim, Young-Suk;Won, Jong-Gun;Jung, Hee-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.4
    • /
    • pp.579-589
    • /
    • 2020
  • This study was carried out to evaluate the effect of rye as green manure crop on the improvement of soil environment and reduction of Phytophthora blight in red pepper of open field where Phytophthora blight occurred frequently. Soil physical properties such as bulk density and porosity were increased in rye cultivation. In addition, gaseous was increased but liquid was decreased compared with conventional cultivation. The analysis of phospholipid fatty acids extracted from soil showed that rye cultivation significantly increased relative abundance of microbial community and ratio of aerobic to anaerobic bacteria. Furthermore, ratio of saturated to unsaturated fatty acids and cyclo-fatty acids to precursor. the indicators of increasing in environmental stresses, were reduced in rye cultivated field. Occurrence of Phytophthora blight in rye cultivation was reduced 30.7% compared with conventional cultivation. These results suggest that rye cultivation in red pepper of open field where Phytophthora blight occurred can improve soil environment and reduce damage of Phytophthora blight.

Study on the OLED Thin Film Encapsulation of the Al2O3 Thin Layer Formed by Atomic Layer Deposition Method (원자층 증착방법에 의한 Al2O3 박막의 OLED Thin Film Encapsulation에 관한 연구)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.67-70
    • /
    • 2022
  • In order to prevent water vapor and oxygen permeation in the organic light emitting diodes (OLED), Al2O3 thin-film encapsulation (TFE) technology were investigated. Atomic layer deposition (ALD) method was used for making the Al2O3 TFE layer because it has superior barrier performance with advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the thickness of the Al2O3 layer was varied by controlling the numbers of the unit pulse cycle including Tri Methyl Aluminum(Al(CH3)3) injection, Ar purge, and H2O injection. In this case, several process parameters such as injection pulse times, Ar flow rate, precursor temperature, and substrate temperatures were fixed for analysis of the effect only on the thickness of the Al2O3 layer. As results, at least the thickness of 39 nm was required in order to obtain the minimum WVTR of 9.04 mg/m2day per one Al2O3 layer and a good transmittance of 90.94 % at 550 nm wavelength.

Properties of $Al_{2}O_{3}-SiO_{2}$ Films prepared with Metal Alkoxides

  • Soh, Dea-Wha;Park, Sung-Jai;Korobova E. Natalya
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.133-138
    • /
    • 2003
  • The preparation of $Al_{2}O_{3}-SiO_{2}$ thin films from less than one micron to several tens of microns in thickness had been prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. For the preparation of thin, continuous $Al_{2}O_{3}-SiO_{2}$ films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state. In the process of applying to substrates, this liquid left a transparent, continuous film that could be converted to crystalline $Al_{2}O_{3}-SiO_{2}$ upon heating to $1000^{\circ}C$. And, a significant change of the film density took place in the crystallization process, thus leading to the strict requirements as to the film thickness, which could survive crystallization.

Preparation of Ag/PVP Nanocomposites as a Solid Precursor for Silver Nanocolloids Solution

  • Hong, Hyun-Ki;Park, Chan-Kyo;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1252-1256
    • /
    • 2010
  • A polyvinylpyrrolidone (PVP)/Ag nanocomposites was prepared by the simultaneous thermal reduction and radical polymerization route. The in situ synthesis of the Ag/PVP nanocomposites is based on the finding that the silver n-propylcarbamate (Ag-PCB) complex can be directly dissolved in the NVP monomer, and decomposed by only heat treatment in the range of 110 to $130^{\circ}C$ to form silver metal. Silver nanoparticles with a narrow size distribution (5 - 40 nm) were obtained, which were well dispersed in the PVP matrix. A successful synthesis of Ag/PVP nanocomposites then proceeded upon heat treatment as low as $110^{\circ}C$. Moreover, important advantages of the in situ synthesis of Ag/PVP composites include that no additives (e.g. solvent, surface-active agent, or reductant of metallic ions) are used, and that the stable silver nanocolloid solution can be directly prepared in high concentration simply by dissolving the Ag/PVP nanocomposites in water or organic solvent.

The Characteristics of ZnO/SnO2 Sensing Materials by Ultrasonic and Hydrothermal Treatments to Volatile Organic Compounds (초음파 및 수열처리법에 의한 ZnO/SnO2 센서의 저농도 VOC 감응특성)

  • Yu, Joon-Boo;Do, Seung-Hoon;Byun, Hyung-Gi;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.446-450
    • /
    • 2012
  • The important factors in sensors are sensitivity, selectivity, and response time. Oxide semiconductors are high sensitivity, fast response and the advantage of miniaturization. Zn-doped $SnO_2$ materials have been synthesized in order to improve the selectivity of the sensor. ZnO/$SnO_2$ crystals were prepared by a simple hydrothermal process and ultrasound pretreated hydrothermal process. ZnO/$SnO_2$ urchins were fabricated in the precursor solution with [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 and rod structures were fabricated ratio of 1:1 and 1:3. Surface area ratio was increased by increasing the ratio of [$Sn^{4+}$]. The sensitivity of sensors were highest at the [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 in ethanol, acetaldehyde, toluene, and nitric oxide.