DOI QR코드

DOI QR Code

The Characteristics of ZnO/SnO2 Sensing Materials by Ultrasonic and Hydrothermal Treatments to Volatile Organic Compounds

초음파 및 수열처리법에 의한 ZnO/SnO2 센서의 저농도 VOC 감응특성

  • Yu, Joon-Boo (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Do, Seung-Hoon (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University) ;
  • Byun, Hyung-Gi (Department of Electronic, Information & Communication Engineering, Kangwon National University) ;
  • Huh, Jeung-Soo (Dept. of Materials Science and Metallurgical Engineering, Kyungpook National University)
  • 유준부 (경북대학교 금속신소재공학과) ;
  • 도승훈 (경북대학교 금속신소재공학과) ;
  • 변형기 (강원대학교 전자정보통신공학부) ;
  • 허증수 (경북대학교 금속신소재공학과)
  • Received : 2012.10.12
  • Accepted : 2012.11.19
  • Published : 2012.11.30

Abstract

The important factors in sensors are sensitivity, selectivity, and response time. Oxide semiconductors are high sensitivity, fast response and the advantage of miniaturization. Zn-doped $SnO_2$ materials have been synthesized in order to improve the selectivity of the sensor. ZnO/$SnO_2$ crystals were prepared by a simple hydrothermal process and ultrasound pretreated hydrothermal process. ZnO/$SnO_2$ urchins were fabricated in the precursor solution with [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 and rod structures were fabricated ratio of 1:1 and 1:3. Surface area ratio was increased by increasing the ratio of [$Sn^{4+}$]. The sensitivity of sensors were highest at the [$Zn^{2+}$]:[$Sn^{4+}$] ratio of 1:5 in ethanol, acetaldehyde, toluene, and nitric oxide.

Keywords

Acknowledgement

Supported by : 경북대학교

References

  1. D. D. Lee, W. Y. Chung, and B. K. Sohn, "High sensitivity and selectivity methane gas sensors doped with Rh as a catalyst", Sens. Actuators B, Vol. 13, pp. 252-255, 1993. https://doi.org/10.1016/0925-4005(93)85374-J
  2. F. H. Ribeiro, M. Chow, and R. A. D Betta, "Kinetics of the complete oxidation of methane over supported palladium catalysts", J. of Catal., Vol. 146, p. 533, 1994.
  3. R. Burch, F. J. Urbaro, and P. K. Loader, "Methane combustion over palladium catalysts", Appl. Catal. A, Vol. 123, pp. 173-184, 1995 https://doi.org/10.1016/0926-860X(94)00251-7
  4. G. Korotcenkov, "Metal oxides for solid-state gas sensors: what determines our choice?", Mater. Sci Eng. B, Vol. 139, pp. 1-23, 2007. https://doi.org/10.1016/j.mseb.2007.01.044
  5. N. Yamazoe, "Toward innovation of gas sensor technology", Sens. Actuators B, Vol. 108, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  6. N. Yamazoe, "New approaches for improving semicondutor gas sensors", Sens. Actuators B, Vol. 5, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4
  7. D. D. Lee, "Chemical sensors technology", J. Sensor Sci. & Tech., Vol. 18, No. 1, pp. 1-21, 2009. https://doi.org/10.5369/JSST.2009.18.1.001
  8. E. Oh and H. Choi, "High performance $NO_2$ gas sensor based on ZnO nanorod grown by ultra sonic irradiation", Sens. Actuators B, Vol. 141, pp. 239-243, 2009. https://doi.org/10.1016/j.snb.2009.06.031
  9. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K. J. Choi, J.H. Lee, and S.H. Hong, "Gas properties of defect-controlled ZnO-nanowire gas sensor", J. Appl. Phys. Lett., Vol. 93, p. 263103, 2008. https://doi.org/10.1063/1.3046726
  10. S. L. Zhang, B. H. Cho, J. B. Yu, J. O. Lim, H. G. Byun, and J. S. Huh, "Preparation, characterization and sensing properties of ZnO nanotubes", Sens. Lett., Vol. 9, pp. 374-378, 2011. https://doi.org/10.1166/sl.2011.1483
  11. S. L. Zhang, B. H. Cho, J. B. Yu, J. O. Lim, H. G. Byun, D.D. Lee, and J. S. Huh, "Volatile organic compounds gas sensing properties of ZnO nanorings", Sens. Lett., Vol. 9, pp. 845-849, 2011. https://doi.org/10.1166/sl.2011.1628
  12. P. M. Aneesh, K. A. Vanaja, and M. K. Jayaraj, "Synthsis of ZnO nanoparticle's by hydrothermal method", Proc. of SPIE, Vol. 6639, 66390J, Califonia, USA, 2007.
  13. S. H. Jung, E. Oh, K. H. Lee, W. Park, and S. H. Jeong, "A sonochemical method for fabricating aligned ZnO nanorods", Adv. Mater. Vol. 19, pp. 749-753, 2007. https://doi.org/10.1002/adma.200601859
  14. K. H. Kim, J. G. Kim, and K. C. Park, "The CO sensing properties of thick film gas sensor using $Co_3O_4$ powders prepared by hydrothermal reaction method", J. Sensor Sci. & Tech., Vol. 19, No. 5, pp. 385-390, 2010. https://doi.org/10.5369/JSST.2010.19.5.385
  15. X. Ding, D. Zeng, and C. Xie, "Controlled growth of SnO2 nanorods clusters via Zndoping and its influence on gas-sensing properties", Sens. Actuators B, Vol. 149, pp. 336-344, 2010. https://doi.org/10.1016/j.snb.2010.06.057

Cited by

  1. Characteristics and Preparation of CNT:ZnO Gas Sensors vol.27, pp.7, 2014, https://doi.org/10.4313/JKEM.2014.27.7.468