• Title/Summary/Keyword: Organic photovoltaic

Search Result 203, Processing Time 0.036 seconds

Aqueous Electrolytes Based Dye-sensitized Solar Cells using I-/I3- Redox Couple to Achieve ≥ 4% Power Conversion Efficiency

  • Choi, Hyeju;Han, Jinjoo;Kang, Moon-Sung;Song, Kihyung;Ko, Jaejung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1433-1439
    • /
    • 2014
  • We report on the influence of water as an electrolyte on the photovoltaic performances. The photovoltaic performance was shown to be quite sensitive to the substituent on the donor group. An optimized efficiency of 4.41% in the presence of 100% water content using $I^-/I{_3}^-$ redox couple was obtained using the D21L6 organic dye.

Organic Photovoltaic Cells Based On P3HT/PCBM Composites (P3HT/PCBM계 유기태양전지)

  • Kim Heejoo;So Won Wook;Moon Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.150-153
    • /
    • 2005
  • 반도체성 고분자인 poly(3-hexylthiophene) (P3HT)과 $C_{60}$ 유도체인 PCBM의 복합재를 이용하여 유기태양전지를 제작하였다. 열처리 온도론 중심으로 다양한 제조조건 하에서의 태양전지 특성을 조사하였다. 열처리 온도를 높임에 따라, P3HT/PCBM 복합재 박막은 뚜렷한 색변화와 함께 가시광 영역에서의 광흡수가 증가됨이 관찰되었고, 소자 성능도 크게 향상되었다. 결과적으로, 본 P3HT/PCBM bulk 이종접합형 구조의 유기 태양전지는 최적화된 제조 조건에서 $2.8\%$의 에너지 전환 효율을 나타내었다($100mW/cm^2$, 백색광).

  • PDF

Study on Fabrication and Properties of organic and inorganic hybrid photovoltaic cells (유무기 하이브리드 태양전지의 제조와 특성에 관한 연구)

  • Ahn, Joon-Ho;Jin, Sung-Hwan;Hong, Soon-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.61-62
    • /
    • 2008
  • 최근 유가 상승의 영향으로 많은 연구자들의 관심이 풍부하고 무한한 태양에너지의 활용에 많은 관심이 쏟아지고 있다. 하지만 현재 상용화된 실리콘 태양전지는 실리콘의 정제 및 제조 단가가 생산 비용에 많은 부분을 차지하여 시장진입에 어려움을 겪고 있다 또한 실리콘의 생산과 가공이 반도체나 디스플레이 분야에서도 반드시 필요하기 때문에 그에 따른 생산량이 전체 소비를 따라 가지 못하여 나타나는 공급 부족 현상도 상당 기간 지속 되었다. 이러한 상황에서 실리콘을 대처할만한 태양전지의 개발과 함께 휴대성이 뛰어난 태양전지의 개발이 많은 관심을 끌고 있다. 본 연구에서는 기존의 유기 태양전지에 CNT를 혼합한 유무기 하이브리드 태양전지를 제조하고 그에 따른 광학적 특성과 전기적 특성을 살펴보았다.

  • PDF

Synthesis and Photovoltaic Properties of Organo Dendritic Photosensitizers based on Carbazole for Dye-sensitized Solar Cells (신규 Carbazole 유도체의 합성과 이를 적용한 DSSC의 광전 변환 특성)

  • Jung, Daeyoung;Kim, Myeongseok;Yang, Hyunsik;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.119.1-119.1
    • /
    • 2011
  • Since Gratzel et al. reported the first efficient dye-sensitized solar cells(DSSCs) in 1991, they have attracted much attention due to their relatively high power conversion efficiency and potentially low cost production. To date, high performance and good stability of DSSC based on Ru-dyes as a photosensitizer had been widely addressed in the literatures. However, the Ru-dyes are facing the problem of manufacturing costs and environmental issues. In order to obtain even cheaper photosensitizers for DSSC, the metal-free organic photosensitizers are strongly desired. The metal-free organic dyes offer superior molar extinction coefficients, low cost, and diverse molecular structures as compared to the conventional Ru-dyes, In this work, we have studied on the synthesis and characterization of the organo dendritic dyes containing different number of electron acceptor moieties in a molecule.

  • PDF

Solar Water Splitting Based on Organic Metal Halide Perovskites (유기 금속 할라이드 페로브스카이트에 기반한 태양광 물분해)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.18-25
    • /
    • 2017
  • In this review, I have summarized the solar water splitting research based on the organic metal halide perovskite material, which has recently been spotlighted worldwide. Significantly, to date, recent reports have been categorized as photovoltaic-electrolyzer configuration and integrated photoelectrolysis. Research in this field is still in its early stages, and it is necessary to develop an effective protection film and manufacture a high-voltage tandem cell in the future.

First Principles Study of Mixed Inorganic-Organic Perovskites (HC(NH2)2PbI3-CH3NH3PbBr3) for Photovoltaic Applications

  • Noh, Min Jong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.378-381
    • /
    • 2015
  • To produce low cost and efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear promising for most suitable solar cells owing to their high power conversion efficiency. Most recent research showes that formamidinium lead iodide ($FAPbI_3$) with methylammonium lead bromide ($MAPbBr_3$) improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination because incorporated $MAPbBr_3$ makes $FAPbI_3$-relatively unstable but comparatively narrow band gap-more stable composition. In respect to first principle study, we investigated band gap of $MAPbI_3$, $FAPbI_3$, $MAPbBr_3$, $(FAPbI_3)_{0.89}-(MAPbBr_3)_{0.11}$ and 0.615(eV), 0.466, 1.197, 0.518 respectively through EDISON DFT software. These results emphasize enhancing structure stability is important factor as well as finding narrow band gap.

  • PDF

Printing Technology for Bulk-Heterojunction Organic Photovoltaic Cells: Inkjet and Aerosol-Jet Printing

  • Yun, Seong-Cheol;Jeong, Jae-Uk;Kim, Dong-Hwan;Im, Jong-Seon;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.11.1-11.1
    • /
    • 2009
  • Bulk-heterojunction type organic photovoltaic cells have been remarkably improved due to the development of efficient donors and post treatment process. However, most of researchers have studied on the OPVs using spin-coating method during the past decade. To commercialize the OPVs, much cheaper printing process should be developed such as inkjet, screen, gravure, and so on. In this study, we have focused on the development of printing technology using Inkjet and Aerosol-Jet printing, which can offer reliable device performance. Finally, 4.5% power conversion efficiency can be achieved under AM 1.5 1sun light illumination, which is the highest value in printed OPVs. We reveal that substantial improvement can be realized by highly efficient bulk heterojunction after printing. Also, we can confirm these two printing methods are promising fabrication methods for large area OPVs. Also, flexible and large area (18 cm2) printed OPVs have been fabricated and device performance will be discussed in detail.

  • PDF

Effect of Thermal Treatment on the Performance and Nanostructures in Polymer Solar Cells with PTB7-Th:PC71BM Bulk Heterojunction Layers

  • Lee, Sooyong;Seo, Jooyeok;Jeong, Jaehoon;Lee, Chulyeon;Song, Myeonghun;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.69-74
    • /
    • 2017
  • Here we report the influence of thermal treatment on the performance of high efficiency polymer solar cells with the bulk heterojunction films of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b'] dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl $C_{71}$ butyric acid methyl ester ($PC_{71}BM$). The crystalline nanostructure of PTB7-Th:$PC_{71}BM$ layers, which were annealed at three different temperatures, was investigated by employing synchrotron radiation grazing incidence X-ray diffraction (GIXD) technique. Results showed that the device performance was slightly reduced by thermal annealing at $50^{\circ}C$ but became significantly poor by thermal annealing at $100^{\circ}C$. The poor device performance by thermal annealing was attributed to the collapse in the crystalline nanostructure of PTB7-Th in the PTB7-Th:$PC_{71}BM$ layers as evidenced by the GIXD measurements that exhibited huge reduction in the intensity of PTB7-Th (100) peak even at $50^{\circ}C$.

The Blending Effect of Electro-deposited Copper-indium-diselenide Particles on the Photovoltaic Properties of Poly(3-octylthiophene)/Fullerene Bulk Heterojunction Cells (폴리(옥틸티오펜)/풀러렌 벌크 이종접합의 광기전성에 미치는 CIS 입자의 블렌딩 효과)

  • Cho, Young-Don;Lee, Sun-Hyoung;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.84-87
    • /
    • 2010
  • Copper-indium-diselenide (CIS) particles were prepared by the electrochemical reduction from the mixture solution of corresponding ion compounds. The prepared CIS was used as an insertion layer or a blending component in the organic photovoltaic bulk heterojunction cells composed of poly(3-octylthiophene) and fullerene. The increase of CIS content resulted in the rapid decrease of the open-circuit voltage as well as short-circuit current. The photovoltaic parameters were analyzed in relation to the structures, composition, and morphology of the photovoltaic blends.

Photovoltaic Effects of Exciton Blocking Layer and Electrodes in Organic Semiconductor $CuPc/C_{60}$ ($CuPc/C_{60}$을 이용한 유기 광기전 소자에서 엑시톤 억제층과 전극 변화에 따른 광기전 특성 연구)

  • Hur, S.W;Oh, H.S.;Lee, W.J.;Lee, J.U.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.112-115
    • /
    • 2004
  • Photovoltaic effects in $CuPc/C_{60}$ heterojunction structure have been studied depending on thickness of exciton blocking layer(BCP) and electrodes. Bare ITO and polymer coated electrode(PEDOT:PSS) were used as an anode, and Al, Ca/Al, Mg/Al, LiF/Al, and LiAl were used as a cathode. Photovoltaic parameters depending on BCP layer thickness from 0 to 60 nm and electrodes having different work function were measured using Keithley 236 source-measure unit and a 500W xenon lamp (ORIEL 66021). We have seen that the BCP layer thickness severely affects on the performance of photovoltaic cells.

  • PDF