• Title/Summary/Keyword: Organic memory

Search Result 121, Processing Time 0.036 seconds

Neurobehavioral Performance Test of Workers Exposed to Mixed Organic Solvents (복합유기용제에 폭로된 근로자들에 대한 신경행동학적 기능의 평가)

  • Kim, Chang-Youn;SaKong, Joon;Chung, Jong-Hak;Joo, Ree;Jeon, Man-Joong;Sung, Nag-Jung;Kim, Sang-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.14 no.2
    • /
    • pp.314-328
    • /
    • 1997
  • A cross-sectional study was performed to evaluate the effects of chronic exposure to low-dose solvent on neurobehavioral performance of 48 male workers exposed to organic solvents. A control group of 50 workers was selected from same factories. Each worker completed a medical and occupational questionnaire and four tests of Neurobehavioral Core Test Battery. These included Benton visual retention test, digit symbol, digit span, and pursuit aiming. Comparison of mean performance showed a significantly poorer performance on digit symbol, digit span, and pursuit aiming. In univariate analysis, age contributed to poor performance on Benton visual retention test and educational level was found to reduce the performance on symbol digit in both groups. Amount of alcohol intake was found to reduce the performance on digit symbol and smoking appeared to slow pursuit aiming in the exposure group. In multiple regression analysis, controlling for age, educational level, alcohol, and smoking, Solvent exposure was found to be associated with performance of digit span, and number of correct dot of pursuit aiming. Age on Benton visual retention, educational level on digit symbol, arid smoking on pursuit aiming were found to be a significant factors on each test items. This study suggest that short-term memory, and perception can be affected easily by chronic exposure of organic solvents which air concentration levels were under the Threshold Limit Value.

  • PDF

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Rapid Detection of Trace 1,4-Dichlorobenzene Using Laser Mass Spectrometry

  • Ding, Lei;Ma, Jing;Zheng, Haiyang;Fang, Li;Zhang, Weijun;Kim, Duk-Hyeon;Cha, Hyung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1393-1396
    • /
    • 2006
  • The 1+1 two-photon Resonant Enhanced Multiphoton Ionization (REMPI) spectra of 1,4-dichlorobenzene was obtained from 240 nm through to 250 nm on a laser mass spectrometer. Special care was taken to build up a heatable sample inlet system suitable for detecting a trace semi-volatile organic compound and reducing the memory effort on the inner wall of the inlet system. The detection limits of 1,4-dichlorobenzene in ppbV/V concentration range at certain wavelengths are presented.

Research Status on the Carbon Nanotube Reinforced Nanocomposite (탄소나노튜브 강화 나노복합재료의 연구현황)

  • 차승일;김경태;이경호;모찬빈;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.25-28
    • /
    • 2003
  • Carbon nanotubes(CNTs), since their first discovery, have been considered as new promising materials in various fields of applications including field emission displays, memory devices, electrodes, NEMS constituents, hydrogen storages and reinforcements in composites due to their extra-ordinary properties. The carbon nanotube reinforced nanocomposites have attracted attention owing to their outstanding mechanical and electrical properties and are expected to overcome the limit of conventional materials. Various application areas are possible for carbon nanotube reinforced nanocomposites through the functionalization of carbon nanotubes. Carbon nanotube reinforced polymer matrix nanocomposites have been fabricated by liquid phase process including surface functionalization and dispersion of CNTs within organic solvent. In case of carbon nanotube reinforced polymer matrix nanocomposites, the mechanical strength and electrical conducting can be improved by more than an order of magnitude. The carbon nanotube reinforced polymer matrix nanocomposites can be applied to high strength polymers, conductive polymers, optical limiters and EMI materials. In spite of successful development of carbon nanotube reinforced polymer matrix nanocomposites, the researches on carbon nanotube reinforced inorganic matrix nanocomposites show limitations due to a difficulty in homogeneous distribution of carbon nanotubes within inorganic matrix. Therefore, the enhancement of carbon nanotube reinforced inorganic nanocomposites is under investigation to maximize the excellent properties of carbon nanotubes. To overcome the current limitations, novel processes, including intensive milling process, sol-gel process, in-situ process and spark plasma sintering of nanocomposite powders are being investigated. In this presentation, current research status on carbon nanotube reinforced nanocomposites with various matrices are reviewed.

  • PDF

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Eu Contents for Non-volatile Memory Device Application (비휘발성 메모리 소자응용을 위한 Eu 첨가량에 따른 BET 박막의 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • The effect of Eu contents on the ferroelectric properties of $Bi_{4-x}Eu_xTi_3 O_{12}$ (BET) thin films has been investigated. Bismuth Europium titanate thin films with a Eu contents were prepared on the $Pt/Ti/SiO_2/Si$ substrate by metal-organic decomposition technique. The structure and the morphology of the films were analyzed using X-ray diffraction (XRD) and field emission scanning microscopy (FE-SEM), respectively. From the XRD analysis, it was found that BET thin films have polycrystalline structure, and the layered-perovskite phase is obtained when the Eu contents exceeds 0.2 (x > 0.2). Also, the ferroelectric characteristics of the BET thin films were found to be dependent on the Eu content. Particularly, the BET films doped with x = 0.75 show better ferroelectric properties (remanent polarization 2Pr = 60.99 C/$cm^2$ and only a little polarization fatigue up to $3.5{\times}10^9$ bipolar switching cycling) than those doped with other Eu contents.

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

The Magnetic Properties and Quantum Effects of Molecular Nanomagnets (분자 자성체의 자기 특성과 양자역학적 효과)

  • Jang, Zee-Hoon
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • Magnetism of molecular nanomagnet, which attracted a lot of academic attention after the discovery of the macroscopic quantum tunneling of magnetism, is reviewed. Molecular nanomagnet is metal-organic material in which magnetic ions are regularly located in the organic skeleton. Also, the interaction between the molecules is very small and those molecules form macroscopic molecular crystal in which molecules are residing at the element points in the crystal. Molecular nanomagnets show a lot of interesting features, especially, equivalence of macroscopic magnetic properties and molecular magnetic properties. In this paper, research results on molecular nanomagnet with microscopic tool like NMR are reviewed mainly. The new method to observe the quantum tunneling of magnetization discovered in Mnl2-ac with NMR is shown and the research results on the microscopic aspects of the macroscopic quantum tunneling of magnetization using the new method are shown. Also, the physical aspect of the level crossing effect which has been reported originally with NMR in molecular nanomagnet is reviewed with experiment results. The research results on the molecular nanomagnets will reveal the important information about the limit of the miniaturization of magnetic memory units and give us the basic scientific knowledge which is needed for the application for the quantum computation. Moreover, academically, many quantum mechanical theories which have not been checked the validity can be checked with experiments.

A study on Performing Time of Neurobehavioral Test in Workers exposed to Organic Solvents (유기용제 폭로 근로자에 있어서 신경행동검사의 시행시점에 관한 연구)

  • Park, Kang-Won;Park, In-Geun;Kim, Jin-Ha;Bae, Kang-Woo;Lee, Duk-Hee;Lee, Yong-Hwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.1 s.56
    • /
    • pp.171-179
    • /
    • 1997
  • This study was performed to see whether neurobehavioral tests was affected by the exposure-free time in the workers chronically exposed to organic solvents. Thirty-four female workers were participated and four items among neurobehavioral core test battery of World Health Organization, including digit span, Santa Ana Dexterity, digit symbol and Benton Visual Retention, were administered to the workers. Test was conducted three times-preshift on Monday, preshift on Weekday and during shift on Weekday-per person and the interval of tests was 2 weeks. Digit span forward, Santa Ana Dexterity, digit symbol, and Benton Visual Retention showed significant decrements by performing time, especially during shift on Week-day versus preshift on Monday and preshift on Weekday. In addition, the score at preshift on Weekday was significantly lower than preshift on Monday, in preferred Santa Ana Dexterity and digit symbol. Generally, those who were exposed to high concentration, over 50 years and under 6 years of education showed marked decrease of score at during shift. So, it would be desirable that neurobehavioral test is conducted at preshift on Monday and items related to short term memory could be considerable to be done at preshift on Weekday.

  • PDF

Electrical Characteristics of Pt/SBT/${Ta_2}{O_5}/Si$ Structure for Non-Volatile Memory Device (비휘발성 메모리를 위한 Pt/SBT/${Ta_2}{O_5}/Si$ 구조의 전기적 특성에 관한 연구)

  • Park, Geon-Sang;Choe, Hun-Sang;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.199-203
    • /
    • 2000
  • $Ta_2_O5$ and $Sr_0.8Bi_2.4Ta_2O_9$ films were deposited on p-type Si(100) substrates by a rf-magnetron sputtering and the metal organic decomposition (MOD), respectively.The electrical characteristics of the $Pt/SBT/Ta_2O_5/Si$ structure were obtained as the functions of $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering and $Ta_2_O5$ thickness. And to certify the role of $Ta_2_O5$ as a buffer layer, the electrical characteristics of $Pt/SBT/Ta_2O_5/Si$ were compared. $Pt/SBT/Ta_2O_5/Si$ capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering did now show typical C-V curve of metal/ferroelectric/insulator/semiconductor (MFIS) structure. The capacitor with 20% $O_2$ gas flow ratio during the $Ta_2_O5$ sputtering had the largest memory window. And the memory window was decreased as the $Ta_2_O5$ gas flow ratio during the $Ta_2_O5$ sputtering was increased to 40%, 60%. In the C-V characteristics of the $Pt/SBT/Ta_2O_5/Si$ capacitors with the different $Ta_2_O5$ thickness, the capacitor with 26nm thickness of $Ta_2_O5$ had the largest memory window. The C-V and leakage current characteristics of the Pt/SBT/Si structure were worse than those of $Pt/SBT/Ta_2O_5/Si$ structure. These results and Auger electron spectroscopy (AES) measurement showed that $Ta_2_O5$ films as a buffer layer tool a role to prevent from the formation of intermediate phase and interdiffusion between SBT and Si.

  • PDF

Analysis of the Involving Mechanism of Kim Eun-Sook Drama : Focused on the Audience's Predictability and the Activities of Constructing Hypotheses (김은숙 드라마 <도깨비>의 몰입기제 구축과정 분석 - 관람자 예측성과 가설 구성 활동을 중심으로 -)

  • Kim, Eui-Jun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.2
    • /
    • pp.79-91
    • /
    • 2019
  • In the entertainment industry, risk management is crucial for securing competitiveness due to the risk of investment. The competitiveness of contents is reinforced when external factors such as industrial environment and internal factors centering on involving mechanism are simultaneously provided. The involving mechanism is a form of cognitive response behavior of the audience and occurs through signal processing of the brain when watching the image contents. The signal processing of the brain related to the contents watching is mainly performed in the working memory area, and in the case of the captivating movie, the information other than the contents transmitted to the audience is blocked to generate a temporary dissociation state. A dissociation state similar to a symptom such as hypnosis or amnesia occurs when the audience's level of involving is high. On the other hand, contents information in which the audience is concentrating his attention is used intensively for constructing future thinking through an episodic buffer while the inflow of external information is relatively blocked or delayed. The spectator's future thinking configuration takes the form of a hypothesis-forming activity and is based on the predictability of the brain. When these hypothesized behaviors correspond to the problem solving simulation of story and predictability which is an evolutionary function of the brain, the audience' s brain is involved in the contents at a high level. In order for the act to be effective, the factors such as the background of the hypothesis, the subject of the hypothesis, the internal information of the person, the type and position and quantity of the hypothesis information, and the hypothesis relevance and type of information are important. Based on these factors, analysis of the Kim Eun Sook Drama 'Goblin' shows that the above elements are operated in a very organic and meaningful way.