• Title/Summary/Keyword: Organic membrane

Search Result 854, Processing Time 0.022 seconds

Research Trends of Metal-Organic Framework Membranes: Fabrication Methods and Gas Separation Applications (MOF 분리막의 연구 동향: 합성 방법 및 기체 분리 응용)

  • Lee, Jeong Hee;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.465-477
    • /
    • 2015
  • Recently membrane-based gas separation has attracted a lot of attention due to the growing demands on energy efficient separation processes. Current membrane-based gas separation is dominant by polymer membranes and limited mostly to non-condensable gases rather than condensable gases such as hydrocarbon isomers due to the limitation s of polymer materials. Metal-organic framework (MOF) materials, consisting of metal ions and organic ligands, have received a tremendous attention as membrane materials due to high surface area, controllable pore structure, and functionality. In this review, we provide a recent development of MOF membrane preparation methods and their gas separation applications.

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.

Recent Advances on Ionic Liquid based Mixed Matrix Membrane for CO2 Separation (CO2 분리를 위한 이온성 액체 기반 혼합 매트릭스 멤브레인의 최근 발전)

  • Wang, Chaerim;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • The membrane-based CO2 capture is a fast-growing branch in gas separating field. Ionic liquid assisted mixed matrix membrane (MMM), which consists of organic fillers with dispersed ionic liquid, shows high potentiality as a candidate for CO2 separation medium. In MMM, various kinds of ionic liquid and inorganic filler are incorporated into polymer to enhance gas separating performance. Especially, the strong interaction between ionic liquid and organic filler gives huge influence on enhancing the separating performance by increasing affinity, selectivity and adsorption of CO2 into the framework. Also the mechanical properties of metal organic framework are positively tuned by input of ionic liquid to improve CO2 permeability and selectivity. In this review, study of various combinations of ionic liquid and metal organic framework (MOF) in the polymeric membrane for carbon dioxide separation is discussed.

Study on the Quality Improvement of Acidic Citrus Juices, Citrus natsudaidai and Citrus grandis, by Bipolar Membrane Electrodialysis (전기투석용 bipolar 막을 이용한 하밀감 및 당유자 주스의 품질개선에 관한 연구)

  • Yang, Min-Ho;Kang, Yeung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.630-636
    • /
    • 2007
  • Acidic citrus juices obtained from C. natsudaidai and C. grandis were electrodialyzed with bipolar and organic acid selective membrane (ion exchange membrane) cartridges. The pH levels of the acidic citrus juices gradually increased to 14.5% (C. grandis) and 25.2% (C. natsudaidai) by electrodialysis with the bipolar membranes, while levels remained consistent when organic acid selective membranes were applied. The total acidity levels decreased more with the organic selective membrane than with the bipolar membrane. Conductivity rose with the bipolar membranes while the value continued to fall rapidly with the organic selective membranes. Sugar and flavonoid contents remained relatively unchanged, without any significant differences before and after electrodialysis with each membrane. Also, ion contents were almost unchanged with the bipolar membranes and the electrolyte, $K_2SO_4$, as compared to rapid changes in sodium and potassium levels with the organic selective membranes and the electrolyte, $K_2SO_4$. In summary, the use of bipolar membranes provided juice with better sensory quality than that of the organic acid selective membranes.

Effects of ion-exchange for NOM removal in water treatment with ceramic membranes ultrafiltration

  • Kabsch-Korbutowicz, Malgorzata;Urbanowska, Agnieszka
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.211-219
    • /
    • 2012
  • To enhance the efficiency of water treatment and reduce the extent of membrane fouling, the membrane separation process is frequently preceded by other physico-chemical processes. One of them might be ion exchange. The aim of this work was to compare the efficiency of natural organic matter removal achieved with various anion-exchange resins, and to verify their potential use in water treatment prior to the ultrafiltration process involving a ceramic membrane. The use of ion exchange prior to ceramic membrane ultrafiltration enhanced final water quality. The most effective was MIEX, which removed significant amounts of the VHA, SHA and CHA fractions. Separation of uncharged fractions was poor with all the resins examined. Water pretreatment involving an ion-exchange resin failed to reduce membrane fouling, which was higher than that observed in unpretreated water. This finding is to be attributed to the uncharged NOM fractions and small resin particles that persisted in the water.

Effect of Operating Conditions on the Fouling of UF Membrane in Treatment of Dissolved Organic Matter (UF를 이용한 용존성 유기물질 제거시 운전조건이 파울링에 미치는 영향)

  • Kwon, Eun-Mi;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1183-1191
    • /
    • 2000
  • Operating conditions for reduction of membrane fouling in treatment of dissolved organic matter by UF membrane process were investigated by pilot-scale plant using various operating conditions. As inlet pressure increased, increament of transmembrane pressure and flux decline were faster. The reason was due to the increase in adsorption of dissolved organic matter and the development of cake layer compression on the membrane surface. When efficient pressure (the difference of pressure between backwash and transmembrane pressures) was high, small amount of pollutant was retained on the membrane surface. When backwash was frequently conducted, low concentration of pollutant was maintained in recycling water. Therefore, backwash could be efficiently conducted with high efficient pressure and high frequency. Fouling rate was correlated with backwash and inlet pressures, recovery rate and cumulative permeated volume. Among the operating parameters backwash pressure was most closely related to fouling rate and inlet pressure was next to backwash pressure. It seems that the fouling was strongly related to pressure which leads to the cake layer compression and adsorption of dissolved organic matter.

  • PDF

Recent Trend of Ultra-Pure Water Producing Equipment

  • Motomura, Yoshito
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.121-147
    • /
    • 1996
  • Since 1980, the water quality of ultra-pure water has been rapidly improved, and presently ultra-pore water producing equipment for 64Mbit is in operation. Table 1 shows the degree of integration of DRM and required water quality exlmple. The requirements of the ultra-pure water for 64Mbit are resistivity: 18.2 MQ/cm or higher, number of particulates: 1 pc/ml or less (0.05 $\mu$m or larger). bacteria count: 0.1 pc/l or less. TOC (Total Organic Carbon, index of organic snbstance) : 1ppb or less, dissolved oxygen: 5ppb or less, silica: 0.5ppb or less, heavy metal ions: 5ppb or less. The effect of metals on the silicon wafer has been well known, and recently it has been reported that the existence of organic substance in ultra-pure water is closely related to the device defect, drawing attention. It is reported that if organic substance sticks to the natural oxidation film, the oxide film remaims on the organic substance attachment in the hydrofluoric acid treatment (removal of natural oxidation film). The organic substance forms film on the silicon wafer, and harmful elements such as metals and N.P.S., components contained in the organic substance and the bad effect due to the generatinn of silicon carbide cannot be forgotten. In order to remove various impurities in raw water, many technological develoments (membrane, ion exchange, TOC removal, piping material, microanalysis, etc.) have been made with ultra-pure water producing equipment and put to practical use. In this paper, technologies put to practical use in recent ultra-pure vater producing equimeut are introduced.

  • PDF

Effect of Probenecid on Tetraethylammonium (TEA) Transport Across Basolateral Membrane of Rabbit Proximal Tubule

  • Choi, Tae-Ryong;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.249-256
    • /
    • 1996
  • The effect of probenecid on the transport of tetraethylammonium (TEA) was studied in renal cortical slices and isolated membrane vesicles to investigate the interaction of organic anion with the organic cation transport system in proximal tubule. Probenecid reversibly inhibited TEA uptake by renal cortical slices in a dose-dependent manner over the concentration range of 1 and 5 mM. The efflux of TEA was not affected by the presence of 3 mM probenecid. Kinetic analysis indicated that probenecid decreased Vmax without significant change in Km. Probenecid inhibited significantly tissue oxygen consumption at concentrations of 3 and 5 mM. However, probenecid did not significantly reduce TEA uptake in brush border and basolateral membrane vesicles prepared from renal cortex even at a concentration as high as 10 mM. These results indicate that probenecid reduces TEA uptake in cortical slices by inhibiting tissue metabolism rather than by an interaction with the organic ration transporter.

  • PDF