• Title/Summary/Keyword: Organic membrane

Search Result 854, Processing Time 0.029 seconds

A Study on the Perstraction Process Using Microporous Hollow Fiber -The Characteristics of Perstraction Using PP and Hollow Fiber- (다공성 실관막을 이용한 투과추출 공정에 관한 연구 -PP 및 PTFE실관막을 이용한 에탄올의 투과추출 특성에 관한 연구-)

  • Cheong, Won;Hwang, Eui-Yoon;Lee, Ho-Won;Kim, Woo-Sik
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-77
    • /
    • 1991
  • The perstraction of ethanol and acetic acid were performed for three systems of xylene-acetic acid-water, MIBK-ethanol-water, and TBP-ethanol-water, The operating variables were pressure difference between aqueous and organic phase, and superfial velocities of aqueous and organic phases. The tortuosities of PP hollow fiber membrane of Celgard X10-400 and PTFE hollow fober membrane of Tex TA001 were found to be 1.82 and 1.43 respectively, They were obtained from mass tranfer coeffidents in membrane phase for xylene-acetic acid-water systems. The permeation flux and overall mass transfer coefficient for MIBK-ethanol-water system are larger than those for TBP-ethanol-water system. This tendency is magnified with increasing the superficial velocity of organic phase. Overall mass transfer coefficient($K_o$) increases nonlinearly with the increase of superficial velocity of organic phase($V_{or}$), and the relationship between $K_o$ and $V_{or}$ is that $K_o {\propto} V_{or}^{-0.35}$. For ethanol perstraetion using the hollow fiber membrane of Gore Tex TA001, the mass transfer in membrane phase is the rate-limiting step.

  • PDF

Oxidation of Organic Compounds Using $TiO_2$ Photocatalytic Membrane Reactors ($TiO_2$ 광촉매 막반응기를 이용한 유기물의 산화)

  • 현상훈;심세진;정연규
    • Membrane Journal
    • /
    • v.4 no.3
    • /
    • pp.152-162
    • /
    • 1994
  • The photodegradation efficiency of formic acid on $TiO_2$ photocatalytic membranes was investigated. A new titania membrane reactors for purification of water combining microfiltration with photocatalytic degradation of organic compounds were developed. Titania membrane tubes(average pore size of $0.2\mu m$) were prepared by the slip casting, and porous thin films of $TiO_2$ were formed on the tube surface by the sol-gel process to increase the surface area, and consequently to increase photodegradation efficiency of organic compounds. The UV light with the wavelength of 365 nm was used as a light source for photocatalytic reactions. The photodegradation efficiency of the organic compounds was strongly dependent on the flux of the solution, the microstructure of the membrane (sol pH), and the amount of $O_2$ supplied. The effects of the primary oxidant such as $H_2O_2$ and dopants such as $Nb_2O_5$ on the photodegradation efficiency were also investigated. The results showed that more than 80% of formic acid could be degraded using membrane coated with a $TiO_2$ sol of pH 1.45. The photodegradation efficiency could be improved by about 20% when adding $H_2O_2$ in feed solution or doping $TiO_2$ membranes with $Fe_2O_3$.

  • PDF

The Effects of Osmogant and Binder in Membrane on Nifedipine Release from Osmotic Granule (니페디핀의 삼투성 과립에서 삼투염과 반투막내의 결합제 종류가 약물방출에 미치는 영향)

  • Jeong Sung-Chan;Cho Young-Ho;Kim Moon-Suk;Lee Bong;Khang Gil-Son;Rhee John-M.;Lee Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.112-117
    • /
    • 2006
  • To improve the type error of osmotic tablet which is one of the drug delivery system, osmotic granule could be manufactured by fluidized bed coating. It has drug layer containing different amount of osmogant and is coated with membrane including different types of binder. We confirmed that the morphology of osmotic granule was different at each coating step. The more mont of osmotic agent, the faster drug release was observed due to increasing the driving force for drug release from osmotic granule. And drug release from osmotic granule coated with membrane using different types of binder was differed by solubility of binders to water. The formation of pore in membrane was confirmed by SEM and DSC Membrane using water soluble binder released more amount of drug. From these results, we assured that difference of osmotic pressure between the inside and the outside of granule and porosity of membrane have an effect on drug release from osmotic granule.

Preparation of Organic-inorganic Hybrid PES Membranes using Fe(II) Clathrochelate (Fe(II) clathrochelate을 이용한 유.무기 PES 복합막의 제조)

  • Jung, Bo Ram;Son, Yeji;Lee, Yong Taek;Kim, Nowon
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.80-91
    • /
    • 2013
  • Metal-templated condensation of cyclohexanedione dioxime and phenylboronic acid in the presence of Fe(II) sulfate heptahydrate proceeds cleanly in methanol to furnish the Fe(II) clathrochelate. An organic/inorganic hybrid membranes composed of Fe(II) clathrochelate and polyethersulfone was prepared by using phase inversion method. For membrane preparation, the Fe(II) clathrochelate was highly soluble (3~5 g/L) in DMF, NMP, and DMAc, which meets the requirements for the solubility of metal complexes in polar aprotic solvent used in membrane preparation. It was stable even in the presence of strong acids, such as trifluorosactic acid (pKa = 0.3). It was characterized by UV-vis spectroscopy, and their stability in solution phase studied in the presence of (i) strong acids or (ii) competing chelates. Organic/inorganic hybrid membranes were prepared with polyethersulfone, polyvinylpyrrolidone, p-toluenesulfonic acid, Fe(II) clathrochelate and DMF by using nonsolvent induced phase inversion method. The addition of Fe(II) clathrochelate leads increase of surface pore density, mean pore size and flux. We can obtain highly asymmetric membranes by addition of Fe(II) clathrochelate.

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

The Effect of Annealing on sSEBS/Polyrotaxanes Electrolyte Membranes for Direct Methanol Fuel Cells

  • Won, Jong-Ok;Cho, Hyun-Dong;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.729-733
    • /
    • 2009
  • Solution casting films of sulfonated poly[styrene-b-(ethylene-r-butylene)-b-styrene] copolymer (sSEBS)-based composite membranes that contained different amounts of organic, nanorod-shaped polyrotaxane were annealed at various temperatures for 1 h. The films' properties were characterized with respect to their use as polymer electrolyte membranes in direct methanol fuel cells (DMFCs). Different aspect ratios of polyrotaxane were prepared using the inclusion-complex reaction between $\alpha$-cyclodextrin and poly(ethylene glycol). The presence of the organic polyrotaxane inside the membrane changed the morphology during the membrane preparation and reduced the transport of methanol. The conductivity and methanol permeability of the composite membranes decreased with increasing polyrotaxane content, while the annealing temperature increased. All of the sSEBS-based, polyrotaxane composite membranes annealed at $140^{\circ}C$ showed a higher selectivity parameter, suggesting their potential usage for DMFCs.

Pervaporation of organic mixtures using modified cellulose acetate membrane

  • Ichikawa, Takayuki;Kusumocahyo, Samuel P.;Shinbo, Toshio;Iwatsubo, Takashi;Kameda, Mitsuyoshi;Ohi, Katsuhide;Yoshimi, Yasuo;Kanamori, Toshiyuki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.124-127
    • /
    • 2004
  • Many studies have examined the use of liquid membranes for various processes such as separations of isomers, gas, organic mixtures, and removal of specific ions. It has been reported that liquid membranes show high selectivity. However, it is difficult to apply the liquid membranes to practical industrial processes because of the low stability of the liquid membranes.(omitted)

  • PDF

Membrane Ultrafiltration for Apparent Molecular Weight Distributions of Dissolved Organic Matter

  • Seo, Jun-Won;Sa, Tongmin;Kim, Jong-Soo
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.31-36
    • /
    • 2000
  • Apparent MWDs of DOM in natural waters and swine wastewaters were determined through membrane ultrafiltration. The nominal MWCOs of ultrafiltration membranes by the manufacturer were confirmed to be similar with those obtained from the ultrafiltration procedures employed in this study using six MW standard compounds. Natural waters showed a wide range of MWOs, but 62.4~87.5% were in the range of MW<10K. High MW fractions were preferentially removed through water treatment processes. Swine wastewater showed two major ranges of MWDs, 49.0% in <1K and 36% in >50k while anaerobically treated swine wastewaters showed 17.5~18.0% in <1K and 53.0~58.8% in <50K. The overall DOM was reduced during anaerobic treatment by 76.8~80.0% as COD; however. the percentage of low MW fractions decreased and that of the high MW fractions increased.

  • PDF

Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality (안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Improvement of Permeability to Organic Solvent in Escherichia coli for a Toxicity Biosensor

  • Bae, Hee-Kyung;Shin, Pyong-Kyun;Song, Bang-Ho
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06b
    • /
    • pp.14-16
    • /
    • 2001
  • The outer membrane (OM) of gram-negative bacteria acts as an effective permeability barrier against noxious agents including several antibiotics and organic solvents, and lipopolysaccharide (LPS) is the key molecule for this function. Outer membrane modified mutants (Ml-166, M2-42, M3-21) of E. coli DH5$\alpha$/pBSl were selected through a mutation using EMS (ethyl-methane-sulfonate). Among the selected mutants, M3-21 was twice as sensitive as LumisTo $x^{ }$ to benzene and M2-41 was 8 times as sensitive as LumisTo $x^{ }$ to toluene. To identify the structural change in the membrane by mutation, the relative cell surface hydrophobicities and the absorption of the crystal violet to the organisms were measured. All the mutants absorbed more crystal violet than their parent and the absorption of crystal violet increased in cell walls as carbohydrate of lipopolysaccharide decreased. When the cell surface hydrophobicities of DH5/pBSl and its mutants were measured by the BATH, the hydrophobicities of mutants increased compared to their parent in several organic solvents. The difference of lipopolysaccharide between DH5/pBSl and its mutants was identified by various ways such as the SDS-PAGE gel, the screening of LPS molecular weights, the mass spectrometry, and MALDI-TOF.F.

  • PDF